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Preface

Content:

This text covers the material of a traditional first course in multivariable calculus, apart from
vector integral calculus, which is contained in the course Calculus 4 (AMath 231).

Prerequisites:

• A good knowledge of the fundamentals of one-variable calculus (limits, differentiation,
the Chain Rule, the linear approximation, Taylor polynomials, curve sketching, the
Riemann integral . . .).

• A good knowledge of the fundamentals of linear algebra (vector algebra, matrix alge-
bra, linear mappings, and determinants).

When studying multivariable calculus one begins to see how the concepts of linear algebra
begin to interact with those of calculus.

Why is Calculus 3 a core course?

Multivariable calculus is one of the basic tools in the mathematical sciences. The material in
this course is used in a variety of 3rd and 4th year courses in all departments of the Faculty
of Mathematics. Examples of subject areas and related courses for which Calculus 3 is a
prerequisite are:

• ordinary and partial differential equations (AMATH 351, 353)
• introduction to optimization (CO 255)
• non-linear programming (CO 367)
• introduction to computational mathematics (CS 371)
• mathematical statistics (STAT 330)
• real and complex analysis (PMATH 331, 332)

Viewpoint:

In writing this text, we have emphasized three aspects of multivariable calculus:

• the geometrical interpretation

• analytical computational skills

• the formal theoretical aspects (definitions, theorems and proofs)

Applications are mentioned as motivation, but are not discussed in depth.

We have given formal definitions of all concepts and have given precise statements of all
theorems. In the first ten chapters we have given detailed proofs of most of the important
theorems (the Differentiability Theorem, the Chain Rule, Taylor’s theorem, and the Second
Derivative Test). There are fewer formal proofs in the final four chapters, with almost none
in Chapters 11 and 14, although the theorems are justified heuristically. We have taken care
to make a clear distinction between a formal proof and a heuristic argument.

Most of the concepts are discussed primarily for functions of two variables, but the case
for more than two variables is usually discussed at the end of a section, under the heading
“generalization”.
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To the Student Reader

This text is written for students who are willing to work hard in order to obtain a good
understanding of multivariable calculus, so as to be able to apply the concepts and methods
elsewhere. In order to be successful in this course it is essential to know single variable
calculus well. So keep your notes from Math 137/138 or your first year calculus text handy
for reference.

This text is intended to be studied with a pencil and paper ready for use. The examples show
a suitable format for writing solutions, although in many cases the details of a calculation
are omitted and should be worked through by the reader.

RED MEANS STOP! The in-chapter exercises are of a routine nature, and are designed
to be done quickly, when first learning the material. You should always do these exercises
and check your answers before proceeding. They are designed to make sure you have some
understanding of the material before you proceed. The end of chapter problems are there for
additional practice.

It is essential to know the definitions before you try to solve problems. Memorize the state-
ments, but at the same time have a geometrical picture in mind, and then with time you will
develop a clear understanding of the concepts.

Some parts of the notes (for example, Chapters 2, 3 and 5) are more theoretical, and hence
more difficult, than other parts. It takes time and mathematical maturity to fully understand
the fundamental concepts of limit, continuity and differentiability. However, there is no need
to feel discouraged if you find these topics difficult, because you can still press on and obtain
a working knowledge of multivariable calculus, as required for applications.

Understanding and writing proofs is usually the most difficult aspect of a course in mathe-
matics. Of course it is possible to apply a theorem without knowing the proof. You just have
to believe that it is true (“trust me . . .”). However, there are long term benefits in studying
the proofs of theorems even if you do not plan to become a mathematician. Firstly, you
will repeatedly apply the definitions, and this will reinforce your understanding of the basic
concepts, making it possible for you to apply these concepts elsewhere. Secondly, studying
proofs is excellent training for the mind in logical thinking. This experience will benefit
you in later years, most immediately in taking courses of a more theoretical nature (e.g. a
theoretical course in Computer Science).

Students’ grades in assignments, tests and the final examination will be influenced by how
clearly the ideas are expressed, and by how well the solutions are organized. It is therefore
important that students ensure that they understand not simply how to obtain an answer
which is technically correct, but also how to present a cogent mathematical argument.
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Chapter 1

Graphs of Scalar Functions

1.1 Scalar Functions

One of the most important concepts in mathematics is that of a function. Recall that
a function f : A → B associates with each element a ∈ A a unique element f (a) ∈ B
called the image of a under f . The set A is called the domain of f and is denoted by
D( f ). The set B is called the codomain of f . The subset of B consisting of all f (a)
is called the range of f and is denoted R( f ).

We will first extend what we did in single variable calculus to functions of several
variables. We will usually look at real functions of two variables whose domain is a
subset of R2 and whose codomain is R. That is, we consider functions f which map
points (x, y) ∈ R2 to a real scalar f (x, y) ∈ R. We write z = f (x, y). However, we will
also consider more general functions f (x1, . . . , xn) which map subsets of Rn to R.

REMARK

Although strictly speaking, f (x, y) denotes the value of the function f at the point
(x, y), it is common practice to use the phrase “the function f (x, y)” to stress which
independent variables the function is dependent on.

DEFINITION

Scalar Function

A scalar function f (x1, . . . , xn) of n-variables is a function whose domain is a subset
of Rn and whose range is a subset of R.

REMARK

We will sometimes use x to represent a point in Rn. Note that there will be several
times in the course where it is convenient to view points in Rn as a vectors in Rn to
make use of results from linear algebra.
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2 Chapter 1 Graphs of Scalar Functions

EXAMPLE 1 Let f : R2 → R be defined by f (x, y) = 2x + 3y + 1. Find f (1,−4) and f (1, 1).

Solution: We have

f (1,−4) = 2(1) + 3(−4) + 1 = −9

f (1, 1) = 2(1) + 3(1) + 1 = 6

EXAMPLE 2 Find the largest subset of R2 that can serve as a domain for f (x, y) =
√

xy. Find the
range of the resulting function f defined on this domain.

Solution: We cannot take the square root of a negative number, so we require xy ≥ 0.
Thus, the domain is the set x ≥ 0, y ≥ 0 and x ≤ 0, y ≤ 0. Since this is a subset of
R2, it is easy to represent with a picture.

x

y

x ≥ 0, y ≥ 0

x ≤ 0, y ≤ 0

For the range, we notice that f (x, y) =
√

xy ≥ 0. To see that the range of f contains
all non-negative real numbers, observe that for any non-negative real number c we

have that f (c2, 1) =
√

c2 = |c| = c.

REMARK

Technically speaking, a function comes with a domain by definition. Thus in the
preceding example we should have asked for the largest subset of R2 that can serve
as a domain for the expression f (x, y) =

√
xy.

Our convention going forwards is that, given such an expression f (x, y), we will tac-
itly assume (unless explicitly stated otherwise) that its domain is the largest possible
subset in R2 where the expression is well-defined. Thus, when we ask for the domain
of such an f (x, y), we are referring to this aforementioned subset.

EXAMPLE 3 Find the domain and range of g(x, y) =
x2 − y2

|x| + |y|
.

Solution: Observe g is defined whenever (x, y) ! (0, 0). So, the domain is R2 −
{(0, 0)}.












































































































Section 1.2 Geometric Interpretation of z = f (x, y) 3

The range is a little more difficult to see. We need to determine all values we can get
from g by taking points in our domain. We first consider points (c, 0), c ! 0. We get

g(c, 0) =
c2 − 02

|c| + |0|
= |c|

Hence, g can take any positive value. Similarly, points (0, d), d ! 0 give

g(0, d) =
02 − d2

|0| + |d|
= −|d|

Thus, g can also take any negative value. Finally, observe that g(1, 1) = 0. Therefore,
the range of g is R.

EXERCISE 1 Sketch the domain and find the range of the following functions:

(a) f (x, y) = ln(1 − x2 − y2).

(b) g(x, y) =
√

16 − x2 + y2.

For more complicated functions, it could be extremely difficult to determine their
range. When we had such situations with single variable functions we often found it
helpful to sketch the graph of the function. So, we now determine how to sketch a
graph of a function f (x, y).

1.2 Geometric Interpretation of z = f (x, y)

When we graph a function y = f (x) we plot points (a, f (a)) in the xy-plane. Observe
that we can think of f (a) as representing the height of the graph y = f (x) above (or
below if negative) the x-axis at x = a.

We define the graph of a function f (x, y) as the set of all points (a, b, f (a, b)) in R3

such that (a, b) ∈ D( f ). We think of f (a, b) as representing the height of the graph
z = f (x, y) above the xy-plane at the point (x, y) = (a, b).

EXAMPLE 1 Let f be defined by f (x, y) = c1x + c2y + c3, where c1, c2, c3 are real constants. We
recognize this as the equation of a plane in R3. That is, the graph of z = f (x, y) is a
plane.

In general, surfaces z = f (x, y) can be quite complicated. To help us visualize and/or
sketch these surfaces, we look at 2-dimensional slices of the surface.

DEFINITION

Level Curves

The level curves of a function f (x, y) are the curves

f (x, y) = k

where k is a constant in the range of f .












































































































4 Chapter 1 Graphs of Scalar Functions

x y

z

z = f (x, y)

(a, b)

(

a, b, f (a, b)
)

EXAMPLE 2 What are the level curves of the function defined by f (x, y) = 2x − 3y + 1?

Solution: We observe that R( f ) = R. So, the level curves of f are

2x − 3y + 1 = f (x, y) = k, k ∈ R

Sketching gives a family of parallel
lines:

x

y

k = −5
k = −2
k = 1

k = 4

k = 7

Observe that the level curve f (x, y) = k is the intersection of z = f (x, y) and the
horizontal plane z = k. Thus, in our family of level curves, each value of k represents
the height of that level curve above the xy-plane. For this reason, the family of level
curves is often called a contour map or a topographic map.

EXAMPLE 3 Consider the functions defined by

f (x, y) = x2 + y2, g(x, y) = x2 − y2, h(x, y) = x2

(a) Sketch the level curves of f and use them to sketch the surface z = f (x, y).

Solution: We first observe that D( f ) = R2 and R( f ) = {z ∈ R | z ≥ 0} since
x2 + y2 ≥ 0. Hence, k can take on values k ≥ 0. For k > 0, the level curves of f are
the circles x2 + y2 = k with center (0,0). However, notice that for k = 0, the level
curve is x2 + y2 = 0 which is just the single point (0, 0). This is called an exceptional
level curve.












































































































Section 1.2 Geometric Interpretation of z = f (x, y) 5

Remembering that k represents the height of the level curve f (x, y) = k above the
xy-plane, we sketch the surface by drawing the circles in the appropriate planes z = k
in R3. We get the surface below which is called a paraboloid.

x

y

k = 0

k = 1

k = 4

k = 9

k = 16

x

y

z

z = k

z = x2 + y2

(b) Sketch the level curves of g and use them to sketch the surface z = g(x, y).

Solution: We first observe that D(g) = R2 and R(g) = R. For any k ∈ Rwe sketch the
level curves x2−y2 = k which we recognize as a family of hyperbola with asymptotes
y = ±x corresponding to x2 − y2 = 0. Using these to sketch the surface, we get a
saddle surface.

x

y
k = 0

k < 0

k > 0

x

y

z

k = 0

k < 0

k > 0

(c) Sketch the level curves of h and use them to sketch the surface z = h(x, y).

Solution: We have that D(h) = R2 and R(h) = {z ∈ R | z ≥ 0}. Thus, for k ≥ 0 we
have level curves

x2 = k ⇒ x = ±
√

k

Hence, the level curves are pairs of vertical straight lines. Using these to sketch the
surface, we get a parabolic cylinder.












































































































6 Chapter 1 Graphs of Scalar Functions

x

y

k = 1
16

k = 1
4

k = 9
16

k = 1
x

y

zk = 1

k = 9
16

k = 1
4

k = 1
16

REMARK

Level curves occur in everyday life. For example, the elevation of the earth’s surface
above sea level is described by an equation z = h(x, y) where x is the latitude and y is
the longitude of the position. A contour map shows the curves of constant elevation,
h(x, y) = k, which are precisely the level curves of h.

Some other examples include use in weather maps to show curves of constant temper-
ature called isotherms, in marine charts to indicate water depths, and in barometric
pressure charts to show curves of constant pressure called isobars.

In general, it is not always possible to sketch the level curves of a given function
f (x, y) by inspection. Later in the course, we will develop some results which can be
used to obtain information about the level curves of a function.

One can also obtain insight into the shape of a surface z = f (x, y) by sketching the
curves of intersection of the surface with other planes.

DEFINITION

Cross Sections

A cross section of a surface z = f (x, y) is the intersection of z = f (x, y) with a plane.

For the purpose of sketching the graph of a surface z = f (x, y), it is useful to consider
the cross sections formed by intersecting z = f (x, y) with the vertical planes x = c
and y = d.

EXAMPLE 4 Let f (x, y) = x2+y2. The cross sections formed by intersection z = f (x, y) with x = c
for c = 0, 1, 2, are:












































































































Section 1.2 Geometric Interpretation of z = f (x, y) 7

x

y

z
z = x2 + y2 cross section

x = 1

y

z
z = 22 + y2 z = 12 + y2

z = 02 + y2

The cross sections formed by intersecting z = f (x, y) with y = d for d = 0, 1, 2 are:

x

y

z
z = x2 + y2

cross section

y = 1

x

z
z = x2 + 22 z = x2 + 12

z = x2 + 02

REMARK

When sketching graphs, for simplicity, when we say to sketch the cross sections of
a surface, we mean to sketch the family of cross sections z = f (c, y) and z = f (x, d)
formed by intersection the surface with the vertical planes x = c and y = d.

EXERCISE 1 Sketch the cross sections of g(x, y) = x2 − y2 and h(x, y) = x2.

EXERCISE 2 Sketch the level curves and cross sections of f (x, y) =
√

x2 + y2 and use them to
sketch the surface z = f (x, y).












































































































8 Chapter 1 Graphs of Scalar Functions

Generalization:

DEFINITION

Level Surfaces

A level surface of a scalar function f (x, y, z) is defined by

f (x, y, z) = k, k ∈ R( f )

EXAMPLE 5 The level surfaces of f (x, y, z) = x2+ y2+ z2 are the family of spheres x2+ y2+ z2 = k,
for k > 0. In the exceptional case k = 0, the level surface is the single point (0, 0, 0).

DEFINITION

Level Sets

A level set a scalar function f (x), x ∈ Rn is defined by

f (x) = k, k ∈ R( f )

EXAMPLE 6 Let f be defined by:
f (x1, . . . , xn) = x2

1 + x2
2 + · · · + x2

n

The level sets of f (x) = k, k > 0 in Rn are called (n− 1)-spheres, denoted by S n−1. If
n = 3, we obtain 2-spheres, S 2, as in Example 5.

Chapter 1 Problem Set

1. For the following functions f (x, y), sketch typical level
curves and any exceptional level curves. Level curves
are defined by f (x, y) = k, where k is a constant.

(a) f (x, y) = 4x2 − y2

(b) f (x, y) = x2 + 4y2 − 9

(c) f (x, y) = x2 + y2 − 4(x + y)

(d) f (x, y) = e4−x2−y2

− 1

(e) f (x, y) = 2xy − y2

Discuss the following:

• What values can k assume? i.e. determine the
range of f .

• How do the level curves change as k increases?

• Shade in any region of the xy-plane for which
k > 0.

• Sketch some typical cross-sections x = c, and
some typical cross-sections y = d.

• Describe/draw/visualize the surface z = f (x, y) in
3-space.

2. Repeat question 1 for the following functions.

(a) f (x, y) = 1 − x4 − y4

(b) f (x, y) = 1 − (x2 + y2 − 4)2

3. Let f (x, y) =
√

4 + x2 − y2.

(a) Sketch the domain of f and state the range of f .

(b) Sketch some level curves and cross
sections x = c and y = d of f .

4. Let f (x, y) = |1 − x2 − y2|.

(a) Sketch the domain of f and state the range of f .

(b) Sketch some level curves and cross
sections x = c and y = d of f .

5. Let f (x, y) =
√

x2 − y2.

(a) Sketch the domain and state the range of f .

(b) Sketch some level curves and cross
sections x = c and y = d of f .

(c) Print a Maple plot of the surface z =
√

x2 − y2.

Draw the level curve 1 =
√

x2 − y2 and the cross-

section z =
√

x2 − 02 on your print out.

6. For each of the given functions f : R2 → R,

(i) sketch the domain of f and state the range of f .

(ii) Sketch some level curves and cross
sections x = c and y = d of f .












































































































Section 1.2 Geometric Interpretation of z = f (x, y) 9

(iii) sketch the surface z = f (x, y). Verify your answer
using Maple. (If you plot the surface in Maple
before attempting to sketch the surface, you are
missing the point of the exercise).

(a) f (x, y) =
√

4 + x2 − y2

(b) f (x, y) = x2

(c) f (x, y) =
√

|1 − x2 − y2|

7. * The temperature of a metal rod at position x,
0 ≤ x ≤ 1, and at time t, t ≥ 0 is given by
u(t, x) = 100e−t sin πx. Sketch the level curves
u = 0, 25, 75, 100. Shade the region of the tx-plane
for which u > 75.

8. Suppose that the temperature T (x, y) of an annular
metal plate (1 ≤ x2 + y2 ≤ e) is given by

T (x, y) = 2 ln(x2 + y2) + 3.

Draw the annulus in the xy-plane, and sketch sev-
eral isotherms (curves of constant temperature). Is the
spacing of the curves uniform, or do they ‘bunch up’
near the inside or outside of the annulus?

9. Imagine a hill whose elevation z above sea-level (in
meters) at position (x, y) is given by z = f (x, y), where
f (x, y) = 1000−9x2 −4y2. A hiker, starting at position
(10,5,0), walks up the hill in a south-westerly direction
(the positive y-axis points northwards). Find the maxi-
mum elevation reached by the hiker.

10. * A function g is defined by

g(x, y) =

∫ y

x

e−t2

dt

Sketch the level curves of g.

Note: An asterisk(*) denotes a challenging problem.
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Chapter 2

Limits

2.1 Definition of a Limit

Recall for a function f (x) we defined lim
x→a

f (x) = L to mean that the values of f (x)

can be made arbitrarily close to L by taking x sufficiently close to a. More precisely,
for every ε > 0 there exists a δ > 0 such that

| f (x) − L| < ε whenever 0 < |x − a| < δ

and lim
x→a

f (x) = L if and only if lim
x→a−

f (x) = L = lim
x→a+

f (x).

Similarly, for scalar functions f (x, y), we want lim
(x,y)→(a,b)

f (x, y) = L to mean the values

of f (x, y) can be made arbitrarily close to L by taking (x, y) sufficiently close to (a, b).
For the one variable case we could only approach the limit from two directions, left
and right. For multivariable scalar functions our domain is now multidimensional,
so we can approach the limits from infinitely many directions. Moreover, we are not
restricted to straight lines either; we can approach (a, b) along any smooth curve as
well! Hence, to generalize the precise definition of a limit we need to generalize the
concepts of an interval.

DEFINITION

Neighborhood

An r-neighborhood of a point (a, b) ∈ R2 is a set

Nr(a, b) = {(x, y) ∈ R2 | ‖(x, y) − (a, b)‖ < r}

REMARK

Recall that ‖(x, y) − (a, b)‖ is the Euclidean distance in R2.
That is,

‖(x, y) − (a, b)‖ =
√

(x − a)2 + (y − b)2

(x, y)

(a, b)

r

Nr (a, b)

10












































































































Section 2.2 Limit Theorems 11

Thus, we get:

DEFINITION

Limit

Assume f (x, y) is defined in a neighborhood of (a, b), except possibly at (a, b). If for
every ε > 0 there exists a δ > 0 such that

0 < ‖(x, y) − (a, b)‖ < δ implies | f (x, y) − L| < ε

then
lim

(x,y)→(a,b)
f (x, y) = L

Domain in R2 Range in R

︸︷︷︸

L − ε L + ε

L

f
(x, y)

(a, b)

δ ( )

‖(x, y) − (a, b)‖ < δ | f (x, y) − L| < ε

Using the precise definition can be quite complicated even for relatively simple limits.
Thus, we will instead use the definition to prove theorems to make finding limits
easier.

2.2 Limit Theorems

In extending our definition of a limit to functions f (x, y) we would hope that we
have preserved all of our properties of limits we had for single variable functions
(otherwise it would not be a very good generalization!).

THEOREM 1 If lim
(x,y)→(a,b)

f (x, y) and lim
(x,y)→(a,b)

g(x, y) both exist, then

(a) lim
(x,y)→(a,b)

[ f (x, y) + g(x, y)] = lim
(x,y)→(a,b)

f (x, y) + lim
(x,y)→(a,b)

g(x, y).

(b) lim
(x,y)→(a,b)

[ f (x, y)g(x, y)] =

[

lim
(x,y)→(a,b)

f (x, y)

] [

lim
(x,y)→(a,b)

g(x, y)

]

.

(c) lim
(x,y)→(a,b)

f (x, y)

g(x, y)
=

lim
(x,y)→(a,b)

f (x, y)

lim
(x,y)→(a,b)

g(x, y)
, provided lim

(x,y)→(a,b)
g(x, y) ! 0.












































































































12 Chapter 2 Limits

Proof: We will prove (a) and leave (b) and (c) as exercises. Let ε > 0. Since
lim

(x,y)→(a,b)
f (x, y) = L1 and lim

(x,y)→(a,b)
g(x, y) = L2 both exist, by definition of a limit,

there exists a δ > 0 such that

0 < ‖(x, y) − (a, b)‖ < δ implies | f (x, y) − L1| <
1

2
ε and |g(x, y) − L2| <

1

2
ε

Thus, if 0 < ‖(x, y) − (a, b)‖ < δ, then

∣
∣
∣ f (x, y) + g(x, y) − (L1 + L2)

∣
∣
∣ =

∣
∣
∣[ f (x, y) − L1] + [g(x, y) − L2]

∣
∣
∣

≤ | f (x, y) − L1| + |g(x, y) − L2|

<
ε

2
+
ε

2
= ε

as required. !

THEOREM 2 If lim
(x,y)→(a,b)

f (x, y) exists, then the limit is unique.

Proof: Assume that lim
(x,y)→(a,b)

f (x, y) = L1 and lim
(x,y)→(a,b)

f (x, y) = L2. Then,

L1 − L2 = lim
(x,y)→(a,b)

f (x, y) − lim
(x,y)→(a,b)

f (x, y) = lim
(x,y)→(a,b)

[ f (x, y) − f (x, y)] = 0

Hence, L1 = L2 and so the limit is unique. !

2.3 Proving a Limit Does Not Exist

Recall for a function of one variable, we often showed a limit did not exist by showing
the left-hand limit did not equal the right-hand limit and using the fact that the limit is
unique. For multivariable functions, we will essentially do the same thing, only now
we have to remember that we are able to approach (a, b) along any smooth curve.

EXAMPLE 1 Let f be defined by f (x, y) =
xy

x2 + y2
, for (x, y) ! (0, 0). Prove that lim

(x,y)→(0,0)
f (x, y)

does not exist.

Solution: To prove this does not exist we just need to approach the limit along two
paths that give different values.

We first approach the limit along the line y = 0. Notice that
by holding y constant, we are turning this limit of a function
of two variables into a limit of a function of a single variable
x. We get

lim
(x,y)→(0,0)

f (x, 0) = lim
x→0

x(0)

x2 + 02
= lim

x→0

0

x2
= 0

x

y

y = x

(0, 0)

(x, x)

(x, 0)

y = 0












































































































Section 2.3 Proving a Limit Does Not Exist 13

Now, approach the limit along the line y = x. This again changes the limit of a
function of two variables into the limit of a function of one variable. We get

lim
(x,y)→(0,0)

f (x, x) = lim
x→0

x2

x2 + x2
=

1

2

Since f (x, y) approaches different values as (x, y) tends to (0, 0) along different paths,
the limit does not exist.

We often can approach the limit along infinitely many lines or smooth curves at the
same time by introducing an arbitrary coefficient m. If the value of the limit depends
on the value of m, then it is not unique and hence, the limit does not exist.

EXAMPLE 2 Prove that lim
(x,y)→(0,0)

sin(xy)

x2 + y2
does not exist.

Solution: Approaching the limit along lines y = mx we get

lim
(x,y)→(0,0)

sin(x(mx))

x2 + (mx)2
= lim

x→0

sin(mx2)

x2(1 + m2)

= lim
x→0

2mx cos(mx2)

2x(1 + m2)
by L’Hôpital’s rule

= lim
x→0

m cos(mx2)

1 + m2

=
m

1 + m2

Since the limit depends on m we can get different limits along different lines y = mx

and hence lim
(x,y)→(0,0)

sin(xy)

x2 + y2
does not exist.

EXERCISE 1 Let f (x, y) =
|x|
|x| + y2

, for (x, y) ! (0, 0). Show that

lim
(x,y)→(0,0)

f (x,mx) = 1

for all m ∈ R, but lim
(x,y)→(0,0)

f (x, y) does not exist.

Hint: y = mx does not describe all lines through the origin.
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14 Chapter 2 Limits

EXAMPLE 3 Let f (x, y) =
x2y

x4 + y2
, for (x, y) ! (0, 0). Show that lim

(x,y)→(0,0)
f (x, y) does not exist.

Solution: As before we first test the limit along lines y = mx. We get

lim
(x,y)→(0,0)

f (x,mx) = lim
x→0

x2(mx)

x4 + (mx)2
= lim

x→0

mx

x2 + m2
= 0

and

lim
(x,y)→(0,0)

f (0, y) = lim
y→0

0

y2
= lim

y→0
0 = 0

These all give the same value, so we start testing curves. Of course, we don’t want
to start randomly guessing curves. To get a limit other than 0, we need the power of
x everywhere in the denominator to match the power of x in the numerator (so that
they cancel out). This prompts us to try the limit along y = x2. We get

lim
(x,y)→(0,0)

f (x, x2) = lim
x→0

x2(x2)

x4 + (x2)2
= lim

x→0

1

2
=

1

2

Since we have two different values along two different paths, the limit does not exist.

REMARK

1. We could have done the last example more efficiently by just testing y = mx2

to begin with and showing the limit depends on m.

2. Make sure that all lines or curves you use actually approach the limit. A com-
mon error is to approach a limit like in Example 3 along a line x = 1... which
of course is meaningless as it does not pass through (0, 0).

3. Example 3 shows that no matter how many lines and/or curves you test, you
cannot use this method to prove a limit exists. Just because you haven’t found
two paths that give different values does not mean there isn’t one!

EXERCISE 2 Prove that lim
(x,y)→(0,0)

x3y

x6 + y2
does not exist.

EXERCISE 3 Prove that lim
(x,y)→(1,0)

(x − 1)(y + 1)

|x − 1| + y
does not exist.
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2.4 Proving a Limit Exists

Since we cannot use the previous methods to prove a limit exists, we prove another
theorem to help us.

THEOREM 1 (Squeeze Theorem)

If there exists a function B(x, y) such that

| f (x, y) − L| ≤ B(x, y), for all (x, y) ! (a, b)

in some neighborhood of (a, b) and lim
(x,y)→(a,b)

B(x, y) = 0, then

lim
(x,y)→(a,b)

f (x, y) = L

Proof: Let ε > 0. Since lim
(x,y)→(a,b)

B(x, y) = 0 we have that there exists a δ > 0 such

that
0 < ‖(x, y) − (a, b)‖ < δ implies |B(x, y) − 0| < ε

Hence, if 0 < ‖(x, y) − (a, b)‖ < δ, then we have

| f (x, y) − L| ≤ B(x, y) = |B(x, y)| < ε

as our hypothesis requires that B(x, y) ≥ 0 for all (x, y) ! (a, b) in the neighborhood
of (a, b). Therefore, by definition of a limit, we have

lim
(x,y)→(a,b)

f (x, y) = L

!

EXERCISE 1 Our statement of the Squeeze Theorem above is not a direct generalization of the
Squeeze Theorem we used in single variable calculus. What would the direct gener-
alization of the Squeeze Theorem be? Show how your generalization and the theorem
above are related.

EXAMPLE 1 Prove that lim
(x,y)→(0,0)

x2y

x2 + y2
= 0.

Solution: We have f (x, y) =
x2y

x2 + y2
and L = 0. For (x, y) ! (0, 0) we obtain

| f (x, y) − L| =

∣
∣
∣
∣
∣
∣

x2y

x2 + y2
− 0

∣
∣
∣
∣
∣
∣
=

x2|y|
x2 + y2












































































































16 Chapter 2 Limits

Since y2 ≥ 0, it follows that x2 ≤ x2 + y2, and hence

x2|y|
x2 + y2

≤ (x2 + y2)
|y|

x2 + y2
= |y|

Thus,
0 ≤ | f (x, y) − L| ≤ |y|, for all (x, y) ! (0, 0)

So, we are taking B(x, y) = |y|. By inspection,

lim
(x,y)→(0,0)

|y| = 0

Consequently, the Squeeze Theorem implies that

lim
(x,y)→(0,0)

x2y

x2 + y2
= 0

The next example illustrates some manipulations with inequalities.

EXAMPLE 2 Prove that
|2x2 − y2|
|x| + |y|

≤ 2|x| + |y|, for all (x, y) ! (0, 0)

Solution: We can give a quick proof of this by realizing that the given inequality is
equivalent to

|2x2 − y2| ≤ (2|x| + |y|)(|x| + |y|) = 2|x|2 + 3|x||y| + |y|2, for all (x, y) ! (0, 0)

The Triangle Inequality immediately gives us that |2x2 − y2| ≤ 2|x|2 + |y|2 which is
certainly ≤ 2|x|2 + 3|x||y|+ |y|2. This proves the inequality above, and hence the given
inequality since the two are equivalent.

We will give a different proof that relies on manipulating the right-side of the original
inequality. The reason being: in practice – like when using the Squeeze Theorem –
we often have to work with functions where we are not handed an upper bound and
instead must discover a suitable one by ourselves. The idea will be to manipulate the
numerator so as to create a factor of |x| + |y|, which will cancel the denominator. For
arbitrary (x, y), consider

|2x2 − y2| = |2x2 + (−y2)|

≤ |2x2| + | − y2|, by the Triangle Inequality

= 2|x|2 + |y|2

Since |x| ≤ |x| + |y|, and |y| ≤ |x| + |y|, we obtain

2|x|2 + |y|2 ≤ 2|x|
(

|x| + |y|
)

+ |y|
(

|x| + |y|
)

=
(

2|x| + |y|
)(

|x| + |y|
)












































































































Section 2.4 Proving a Limit Exists 17

Hence,

|2x2 − y2|
|x| + |y|

≤
(2|x| + |y|)(|x| + |y|)

|x| + |y|
= 2|x| + |y|

as required.

REMARK

Be careful when working with inequalities! For example, the statement

x < x2

is false if |x| < 1. The appendix at the end of this chapter gives a brief review of
inequalities.

EXERCISE 2 Prove that
|x3 − y3|
x2 + y2

≤ |x| + |y| for all (x, y) ! (0, 0)

Does equality ever hold?

Before one can apply the Squeeze Theorem, one must have a possible limiting value
L in mind. Of course, if you are asked to

“Prove that lim
(x,y)→(a,b)

f (x, y) = L”

you are given the limiting value L, and can apply the Squeeze Theorem directly as in
Example 1. On the other hand, if you are asked to

“Determine whether lim
(x,y)→(a,b)

f (x, y) exists, and if so find its value”

you should begin by letting (x, y) approach (a, b) along straight lines of different
slope.

If the limiting value of f (x, y) depends on the slope, then lim
(x,y)→(a,b)

f (x, y) does not

exist.

If the limiting value of f (x, y) does not depend on the slope and equals L, say, then

lim
(x,y)→(a,b)

f (x, y) may exist and if it does exist, it equals L.

You should then try to apply the Squeeze Theorem to prove that the limit does exist
and equals L.

If you fail to derive a suitable inequality, you cannot draw a conclusion, and you are
faced with a dilemma . . .












































































































18 Chapter 2 Limits

perhaps a suitable inequality does exist, but you were not skillful enough
to derive it,

OR

perhaps if you let (x, y) approach (a, b) along curves, then the you may
get a limiting value other than L along one of those curves, in which case

lim
(x,y)→(a,b)

f (x, y) does not exist.

This can be a process of trial and error, but experience will help to shorten the process.

Here is an example:

EXAMPLE 3 Determine whether lim
(x,y)→(0,0)

x2 − |x| − |y|
|x| + |y|

exists, and if so find its value.

Solution: Trying lines y = mx we get

lim
x→0

x2 − |x| − |m||x|
|x| + |m||x|

= lim
x→0

|x| − (1 + |m|)
1 + |m|

= −1

Since the value along each line is L = −1, we try to prove the limit is −1 with the
Squeeze Theorem. Thus, we consider

∣
∣
∣
∣
∣
∣

x2 − |x| − |y|
|x| + |y|

− (−1)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

x2 − |x| − |y|
|x| + |y|

+
|x| + |y|
|x| + |y|

∣
∣
∣
∣
∣
∣

=
x2

|x| + |y|

=
|x| · |x|
|x| + |y|

≤
|x|(|x| + |y|)
|x| + |y|

= |x|, since |x| ≤ (|x| + |y|)

Since lim
(x,y)→(0,0)

|x| = 0 we get lim
(x,y)→(0,0)

x2−|x|−|y|
|x|+|y| = −1 by the Squeeze Theorem.

EXERCISE 3 Consider f defined by

f (x, y) =
x2(x − 1) − y2

x2 + y2
, for (x, y) ! (0, 0)

Determine whether lim
(x,y)→(0,0)

f (x, y) exists, and if so find its value.
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REMARK

The concept of a neighbourhood, the definition of a limit, the Squeeze Theorem and
the limit theorems are all valid for scalar functions f (x), x ∈ Rn. In fact, to generalize
these concepts, one only needs to recall that if x = (x1, . . . , xn) and a = (a1, . . . , an)
are in Rn, then the Euclidean distance from x to a is

‖x − a‖ =
√

(x1 − a1)2 + · · · + (xn − an)2

2.5 Appendix: Inequalities

The following statements can be taken as axioms (i.e. assumed properties) which
define the notion of “less than” (denoted “<”) for real numbers.1

Trichotomy Property: For any real numbers a and b, one and only one of the
following holds:

a = b, a < b, b < a

Transitivity Property: If a < b and b < c, then a < c.

Addition Property: If a < b, then for all c, a + c < b + c.

Multiplication Property: If a < b and c < 0, then bc < ac.

Using these properties one can deduce other results.

The absolute value of a real number a is defined by

|a| =







a if a ≥ 0

−a if a < 0

Three frequently used results, which follow from the axioms, are listed below.

1. |a| =
√

a2.

2. |a| < b if and only if −b < a < b.

3. the Triangle Inequality: |a + b| ≤ |a| + |b| for all a, b ∈ R.

1One can equivalently use the notion of “greater than” (denoted “>”). The statement “a > b”
means “b < a”.












































































































20 Chapter 2 Limits

REMARK

When using the Squeeze Theorem, the most commonly used inequalities are:

1. the Triangle Inequality

2. if c > 0, then a < a + c

3. the cosine inequality 2|x||y| ≤ x2 + y2

One particularly common use of (2) is for things like

|x| =
√

x2 ≤
√

x2 + y2

We again stress that it is very important that one be careful when working with in-
equalities. Another common mistake is

if c > 0, then |a + c| ≤ a + c

Give an example to show where this statement is false.
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Chapter 2 Problem Set

1. Prove that lim
(x,y)→(0,0)

x4 − y5

x4 + y4
does not exist.

2. Prove that lim
(x,y)→(0,0)

x2(y − 3) − 6y2

x2 + 2y2
= −3.

3. Find the limit, if it exists, or show that the limit does
not exist.

(a) lim
(x,y)→(0,0)

x4 + 2y4

x4 + y4

(b) lim
(x,y)→(0,0)

(x − y)2

|x| + |y|

(c) lim
(x,y)→(0,0)

x2 − 2|x| − |y|
2|x| + |y|

(d) lim
(x,y)→(0,0)

x4y3

x8 + y6

4. Find the limit, if it exists, or show that the limit does
not exist.

(a) lim
(x,y)→(0,0)

x2 − 2|x| − 2|y|
2|x| + |y|

(b) lim
(x,y)→(0,0)

x3y2

x4 + y6

5. Find the limit, if it exists, or show that the limit does
not exist.

(a) lim
(x,y)→(0,0)

|x| − |y|
|x| + |y|

(b) lim
(x,y)→(0,0)

x2 − 3|x| − 3|y|
|x| + |y|

(c) lim
(x,y)→(0,0)

x5y2

x10 + y4

(d) lim
(x,y)→(0,0)

x3y4

x6 + y6

6. (a) Prove that
√

x4 + y4 ≤ x2 + y2 for all (x, y) ∈ R2.

(b) Determine whether lim
(x,y)→(0,0)

√

x4 + y4

√

x2 + y2
exists.

7. Determine the values of p for which the following limit
does or does not exist:

lim
(x,y)→(0,0)

|x||y|p

x2 + y2

8. * Let f (x, y) =
|x|a|y|b

|x|c + |y|d
where a, b, c and d are posi-

tive numbers.

(a) Prove that if
a

c
+

b

d
> 1 then lim

(x,y)→(0,0)
f (x, y) exists

and equals zero.

(b) Prove that if
a

c
+

b

d
≤ 1, then lim

(x,y)→(0,0)
f (x, y) does

not exist.
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Chapter 3

Continuous Functions

3.1 Definition of a Continuous Function

In many situations, we shall require that a function f (x, y) is continuous. Intuitively,
this means that the graph of f (the surface z = f (x, y)) has no “breaks” or “holes” in
it. As with functions of one variable, continuity is defined by using limits.

x y

z

break in the surface
z = f (x, y)

set of points (x, y) at
which f is not continuous

EXERCISE 1 Review the definition of a continuous function of one variable in your first year cal-
culus text. Give an example (formula and graph) of a function y = f (x) which is
defined for all x ∈ R, but is not continuous at x = 1.

Here is the formal definition:

DEFINITION

Continuous

A function f (x, y) is continuous at (a, b) if and only if

lim
(x,y)→(a,b)

f (x, y) = f (a, b)

Additionally, if f is continuous at every point in a set D ⊂ R2, then we say that f is
continuous on D.
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Section 3.1 Definition of a Continuous Function 23

REMARK

There are really three requirements in this definition:

1. lim
(x,y)→(a,b)

f (x, y) exists,

2. f is defined at (a, b),

3. the stated equality.

EXAMPLE 1 Let f be defined by

f (x, y) =







x2y

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

Determine whether f is continuous at (0, 0).

Solution: According to the definition we have to determine whether

lim
(x,y)→(0,0)

x2y

x2 + y2
= 0

This limit was established in Example 2.4.1. It follows that f is continuous at (0, 0).

EXAMPLE 2 Prove that f (x, y) =







xy

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)
is not continuous at (0, 0).

Solution: To prove that f is not continuous at (0, 0), we just need to prove that the
limit

lim
(x,y)→(0,0)

f (x, y) = lim
(x,y)→(0,0)

xy

x2 + y2

does not equal 0. Therefore, if we can find one path such that the limit does not equal
0, then, since the value of a limit must be unique, this will prove that the limit cannot
be equal to 0.

Approaching the limit along the line y = x gives

lim
x→0

x2

x2 + x2
=

1

2

Thus, the limit cannot equal 0, so the f is not continuous at (0, 0).












































































































24 Chapter 3 Continuous Functions

EXAMPLE 3 Consider f defined by

f (x, y) =
sin(xy)

x2 + y2
, if (x, y) ! (0, 0)

Can f be defined at (0, 0) so that the resulting function, whose domain is R2, is
continuous at (0, 0)?

Solution: By definition of continuity, we must determine whether

lim
(x,y)→(0,0)

sin(xy)

x2 + y2

exists. It was shown in Example 2 in Section 2.3 that this limit does not exist. Thus,
no matter what value we assign to f (0, 0) the resulting function will not be continuous
at (0, 0).

EXERCISE 2 Let f be defined by f (x, y) =







xy

|x| + |y|
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

Determine whether f is continuous at (0, 0).

3.2 The Continuity Theorems

One can often quickly prove that a function is continuous by applying certain theo-
rems. The idea is to view a given function as being formed from simple functions by
certain basic operations, which we now define.

DEFINITION

Operations on
Functions

If f (x, y) and g(x, y) are scalar functions and (x, y) ∈ D( f ) ∩ D(g), then:

1. the sum f + g is defined by

( f + g)(x, y) = f (x, y) + g(x, y)

2. the product f g is defined by

( f g)(x, y) = f (x, y)g(x, y)

3. the quotient
f

g
is defined by

(

f

g

)

(x, y) =
f (x, y)

g(x, y)
, if g(x, y) ! 0












































































































Section 3.2 The Continuity Theorems 25

DEFINITION

Composite
Function

For scalar functions g(t) and f (x, y) the composite function g ◦ f is defined by

(g ◦ f )(x, y) = g( f (x, y))

for all (x, y) ∈ D( f ) for which f (x, y) ∈ D(g).

When composing multivariable functions, it is very important to make sure the range
of the inner function is a subset of the domain of the outer function. For example,
we cannot compose scalar functions f (x, y) and h(x, y) since f (x, y) ∈ R which is not
acceptable input into h.

We shall refer to the following theorems collectively as the Continuity Theorems.

THEOREM 1 If f and g are both continuous at (a, b), then f + g and f g are continuous at (a, b).

Proof: We prove the result for f + g and leave the proof for f g as an exercise. By
the hypothesis and the definition of continuous function we have that

lim
(x,y)→(a,b)

f (x, y) = f (a, b)

lim
(x,y)→(a,b)

g(x, y) = g(a, b)

Hence, by definition of the sum and limit properties, we get

lim
(x,y)→(a,b)

( f + g)(x, y) = lim
(x,y)→(a,b)

f (x, y) + lim
(x,y)→(a,b)

g(x, y)

= f (a, b) + g(a, b)

= ( f + g)(a, b)

!

EXERCISE 1 Complete the proof of the theorem by proving that f g is continuous at (a, b).

THEOREM 2 If f and g are both continuous at (a, b) and g(a, b) ! 0, then the quotient
f

g
is

continuous at (a, b).

EXERCISE 2 Use the Limit Theorems to prove Theorem 2. Where is the hypothesis g(a, b) ! 0
used explicitly?












































































































26 Chapter 3 Continuous Functions

THEOREM 3 If f (x, y) is continuous at (a, b) and g(t) is continuous at f (a, b), then the composition
g ◦ f is continuous at (a, b).

Proof: Let ε > 0. By definition of continuity we have that

lim
t→ f (a,b)

g(t) = g( f (a, b))

So, by definition of a limit there exists a δ1 > 0 such that

|t − f (a, b)| < δ1 implies |g(t) − g( f (a, b))| < ε (3.1)

Similarly, we have that
lim

(x,y)→(a,b)
f (x, y) = f (a, b)

Hence, given the above δ1, there exists a δ > 0 such that

‖(x, y) − (a, b)‖ < δ implies | f (x, y) − f (a, b)| < δ1 (3.2)

Notice that the conclusion of (3.2) is the hypothesis of (3.1) where t = f (x, y). Hence,
combining (3.1) and (3.2), we get

‖(x, y)− (a, b)‖ < δ implies | f (x, y)− f (a, b)| < δ1 implies |g( f (x, y))− g( f (a, b))| < ε

or equivalently,

‖(x, y) − (a, b)‖ < δ implies |(g ◦ f )(x, y) − (g ◦ f )(a, b)| < ε

Consequently, by definition of a limit,

lim
(x,y)→(a,b)

(g ◦ f )(x, y) = (g ◦ f )(a, b)

which proves that g ◦ f is continuous at (a, b). !

Before we can apply these theorems, we need a list of basic functions which are
known to be continuous on their domains:

• the constant function f (x, y) = k
• the power functions f (x, y) = xn, f (x, y) = yn

• the logarithm function ln(·)
• the exponential function e(·)

• the trigonometric functions, sin(·), cos(·), etc.
• the inverse trigonometric functions, arcsin(·), etc.
• the absolute value function | · |

EXERCISE 3 Prove that the constant function f (x, y) = k and the coordinate functions f (x, y) = x,
f (x, y) = y are continuous on their domains.












































































































Section 3.2 The Continuity Theorems 27

EXAMPLE 1 Prove that h(x, y) = sin(6x2y + 3xy2) is continuous for all (x, y) ∈ R2.

Solution: By applying Theorem 1 to the constant function and power functions, it
follows that

f (x, y) = 6x2y + 3xy2 (3.3)

is continuous for all (x, y) ∈ R2. Theorem 3, with g(·) = sin(·) and f as in equation
(3.3), now implies that h is continuous for all (x, y) ∈ R2.

EXERCISE 4 Prove that h(x, y) = (xy)π is continuous for all (x, y) which satisfy xy > 0. Which of
the theorems and basic functions do you have to use?

EXERCISE 5 Which of the basic functions and theorems do you have to use in order to prove that

h(x, y) =
sin2 | x + 2y |

x2 + y2
is continuous for all (x, y) ! (0, 0)?

These examples and exercises show that by using the Continuity Theorems, one can
often prove continuity of a given function essentially “by inspection”. However, for
certain points, where the Continuity Theorems can not be applied, one still has to
use the definition of continuity in order to determine whether or not the function is
continuous. Here is an example:

EXAMPLE 2 Discuss the continuity of the function f defined by

f (x, y) =







exy − 1

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

Solution: For (x, y) ! (0, 0) the Continuity Theorems immediately imply that f is
continuous at these points.

Observe the point (0, 0) is singled out in the definition of the function. Thus, the
Continuity Theorems cannot be applied at (0, 0) and so we have to use the definition.
That is, we have to determine whether

lim
(x,y)→(0,0)

f (x, y) = f (0, 0) = 0

On the line y = x we get

lim
(x,y)→(0,0)

f (x, x) = lim
x→0

ex2

− 1

2x2
= lim

x→0

2xex2

4x
= lim

x→0

ex2

2
=

1

2

by L’Hôpital’s rule. It follows that lim
(x,y)→(0,0)

f (x, y) does not equal f (0, 0), and hence

by definition, f is not continuous at (0, 0).












































































































28 Chapter 3 Continuous Functions

EXERCISE 6 Would the function f in Example 2 be continuous at (0, 0) if we defined f (0, 0) = 1
2
?

EXAMPLE 3 Discuss the continuity of the function f defined by

f (x, y) =







|y − x|
y − x

if x ! y

0 if x = y

Solution: For points (x, y) with x ! y the Continuity Theorems immediately imply
that f is continuous at these points.

We can not apply the continuity theorems at the points (x, y) with x = y. Consider
any one of these points and denote it by (a, a).

If (x, y) approaches (a, a) with y − x > 0, then |y − x| = y − x, and f (x, y) approaches
(and in fact equals) 1. On the other hand, if (x, y) approaches (a, a) with y − x < 0,
then f (x, y) approaches −1. Thus,

lim
(x,y)→(a,a)

f (x, y)

does not exist. So, by definition of continuity, f is
not continuous at (a, a).
The geometric interpretation is simple. The graph of
f consists of two parallel half-planes which form a
“step” along the line y = x.

x

y

z

z = −1 z = 1

y = x

3.3 Limits Revisited

So far in this chapter, we have shown how to prove that a function is continuous at
a point essentially “by inspection” by using the Continuity Theorems. This makes it
easy to evaluate lim

(x,y)→(a,b)
f (x, y) if f is continuous at (a, b). In particular, if f is con-

tinuous at (a, b), then lim
(x,y)→(a,b)

f (x, y) can be evaluated simply by evaluating f (a, b).

EXAMPLE 1 Define f (x, y) =
cos

√

x2 + y2

x2 + y2
, for (x, y) ! (0, 0). Evaluate

lim
(x,y)→(π,0)

f (x, y)

Solution: By the Continuity Theorems, f is continuous for all (x, y) ! (0, 0). Thus,
by definition of continuity,

lim
(x,y)→(π,0)

f (x, y) = f (π, 0) =
cos
√
π2 + 02

π2 + 02
= −

1

π2












































































































Section 3.3 Limits Revisited 29

EXERCISE 1 Evaluate lim
(x,y)→(1,π)

ln(1 + esin xy) justifying your method.

REMARK

In applying the Squeeze Theorem one has to prove that lim
(x,y)→(a,b)

B(x, y) = 0. One

hopes to be able to evaluate this limit by inspection, and so one tries to set up the
inequality in the Squeeze Theorem so that B(x, y) is continuous at (a, b).

Chapter 3 Problem Set

1. Let f (x, y) =







x2 − y2

|x| + |y|
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0).

(a) Evaluate lim
(x,y)→(2,1)

f (x, y).

(b) Determine if f (x, y) is continuous at (0, 0).

2. Let f (x, y) =







x4 − y4

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0).
Determine

all points where f is continuous.

3. Let f (x, y) =







x2 − y2

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0).
Determine

all points where f is continuous.

4. For each function f , determine (with proof) whether or
not lim

(x,y)→(0,0)
f (x, y) exists. Define f (0, 0) so as to make

the function continuous at (0, 0), when possible.

(a) f (x, y) =
x3 − 2y3

x2 + 2y2

(b) f (x, y) =
xy4

x2 + y6

(c) f (x, y) =
xy3

x2 + y6

(d) f (x, y) =
2|x| − |y|
|x| + 2|y|

(e) f (x, y) =
x2 − 6y2

|x| + 3|y|

(f) f (x, y) =
sin(x2 + 2y2)

x2 + y2

(g) f (x, y) =
y2 − 4|y| − 2|x|
|x| + 2|y|.

5. Let f (x, y) =
sin 2(x2 + y2)

(x2 + y2)
, for (x, y) ! (0, 0).

(a) By using the inequality

θ −
1

6
θ3 ≤ sin θ ≤ θ, for θ ≥ 0

or otherwise, evaluate lim
(x,y)→(0,0)

f (x, y).

(b) Define f (0, 0) so as to make the function f con-
tinuous at (0, 0).

(c) Use theorems on continuity to prove that the
function f as defined in (b) is continuous for all
(x, y) ! (0, 0).

6. A function f is defined by

f (x, y) =







1 − e−|xy|

√

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

Prove that f is continuous for all (x, y) ∈ R2.

Hint: Don’t do much work for (x, y) ! (0, 0).
For (x, y) = (0, 0), you may use the inequality
0 < 1 − e−u < u, for all u > 0.

7. Let f (x, y) =
y2 − x4

y2 + x4
, for (x, y) ! (0, 0).

(a) Give the range of f , and sketch typical level
curves f (x, y) = k. In your diagram, describe the
set of points (x, y) for which | f (x, y)| ≤ 3

5
.

(b) On the basis of part (a), draw a conclusion about
lim

(x,y)→(0,0)
f (x, y). Explain.
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Chapter 4

The Linear Approximation

4.1 Partial Derivatives

A scalar function f (x, y) can be differentiated in two natural ways:

1. Treat y as a constant and differentiate with respect to x to obtain
∂ f

∂x
.

2. Treat x as a constant and differentiate with respect to y to obtain
∂ f

∂y
.

The derivatives
∂ f

∂x
and
∂ f

∂y
are called the (first) partial derivatives of f .

Here is the formal definition.

DEFINITION

Partial
Derivatives

The partial derivatives of f (x, y) are defined by

∂ f

∂x
= fx = lim

h→0

f (x + h, y) − f (x, y)

h
∂ f

∂y
= fy = lim

h→0

f (x, y + h) − f (x, y)

h

provided that these limits exist.

It is sometimes convenient to use operator notation D1 f and D2 f for the partial
derivatives of f (x, y). The notation D1 f means: differentiate f with respect to the
variable in the first position, holding the other fixed. If the independent variables are
x and y, then

D1 f =
∂ f

∂x
= fx, D2 f =

∂ f

∂y
= fy

Typically one tries to calculate the partial derivatives by using the standard rules for
differentiation of functions of one variable. However, if these cannot be applied, then
the definition of the partial derivatives must be used.

30












































































































Section 4.1 Partial Derivatives 31

EXAMPLE 1 Consider the function f defined by f (x, y) = xekxy where k is a constant. Determine
∂ f

∂x
and
∂ f

∂y
.

Solution: By using the Product Rule and Chain Rule for differentiation,

∂ f

∂x
= (1)ekxy + xekxy(ky) = (1 + kxy)ekxy

∂ f

∂y
= xekxy(kx) = kx2ekxy

EXERCISE 1 A function f is defined by f (x, y) = sin(xy2). Determine fx and fy.

EXAMPLE 2 A function f is defined by f (x, y) = (x3 + y3)
1
3 . Determine whether

∂ f

∂x
(0, 0) exists.

Solution: By single-variable differentiation rules,

∂ f

∂x
(x, y) =

x2

(x3 + y3)2/3
(4.1)

for all (x, y) such that x3 + y3 ! 0. One cannot substitute (x, y) = (0, 0) in equation
(4.1) since the denominator would be zero. Thus, we must use the definition of the
partial derivatives at (0, 0). We get

∂ f

∂x
(0, 0) = lim

h→0

f (0 + h, 0) − f (0, 0)

h

= lim
h→0

(h3 + 03)1/3 − 0

h
= lim

h→0
1 = 1

EXAMPLE 3 Let f (x, y) =







xy

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)
. Calculate fx(0, 0) and fy(0, 0).

Solution: Since f changes definition at (0, 0), we must use the definition of the partial
derivatives. We get

fx(0, 0) = lim
h→0

f (0 + h, 0) − f (0, 0)

h
= lim

h→0

h(0)

h2+02 − 0

h
= 0

fy(0, 0) = lim
h→0

f (0, 0 + h) − f (0, 0)

h
= lim

h→0

0(h)

02+h2 − 0

h
= 0












































































































32 Chapter 4 The Linear Approximation

REMARK

In Example 3.1.2, we showed that f (x, y) =







xy

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)
is not con-

tinuous at (0, 0), but we have just shown that its partial derivatives exist! This demon-
strates that the concept of partial derivatives does not match our concept of differen-
tiability for functions of one variable from Calculus 1. We will look at this more in
the next chapter.

EXERCISE 2 Refer to the function in Example 2. Show that
∂ f

∂x
(a,−a) does not exist for a ! 0.

EXERCISE 3 A function f is defined by f (x, y) = |x(y − 1)|. Determine whether
∂ f

∂x
(0, 0) and

∂ f

∂x
(0, 1) exist.

Generalization

We can extend what we have done for scalar functions of two variables to scalar
functions of n variables f (x), x ∈ Rn. To take the partial derivative of f with respect
to its i-th variable, we hold all the other variables constant and differentiate with
respect to the i-th variable.

EXAMPLE 4 Let f (x, y, z) = xy2z3. Find fx, fy, and fz.

Solution: We have

fx(x, y, z) = y2z3

fy(x, y, z) = 2xyz3

fz(x, y, z) = 3xy2z2

EXERCISE 4 For f (x, y, z), write the precise definition of
∂ f

∂x
,
∂ f

∂y
, and

∂ f

∂z
.












































































































Section 4.2 Higher-Order Partial Derivatives 33

4.2 Higher-Order Partial Derivatives

Second Partial Derivatives

Observe that the partial derivatives of a scalar function of two variables are both
scalar functions of two variables. Therefore, we can take the partial derivatives of the
partial derivatives of any scalar function.

In how many ways can one calculate a second partial derivative of f (x, y)? Since
both of the partial derivatives of f have two partial derivatives, there are four possible
second partial derivatives of f . They are:

∂2 f

∂x2
=
∂

∂x

(

∂ f

∂x

)

, i.e. differentiate
∂ f

∂x
with respect to x, with y fixed.

∂2 f

∂y∂x
=
∂

∂y

(

∂ f

∂x

)

, i.e. differentiate
∂ f

∂x
with respect to y, with x fixed.

Similarly
∂2 f

∂x∂y
=
∂

∂x

(

∂ f

∂y

)

,
∂2 f

∂y2
=
∂

∂y

(

∂ f

∂y

)

It is often convenient to use the subscript notation or the operator notation:

∂2 f

∂x2
= fxx = D2

1 f ,
∂2 f

∂y∂x
= fxy = D2D1 f

∂2 f

∂x∂y
= fyx = D1D2 f ,

∂2 f

∂y2
= fyy = D2

2 f

The subscript notation suggests that one could write the second partial derivatives in
a 2 × 2 matrix.

DEFINITION

Hessian Matrix

The Hessian matrix of f (x, y), denoted by H f (x, y), is defined as

H f (x, y) =

[

fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

]

EXAMPLE 1 Let k be a constant. Find all the second partial derivatives of f (x, y) = xekxy.

Solution: We first calculate the first partial derivatives. We have

∂ f

∂x
(x, y) = ekxy + kxyekxy

∂ f

∂y
(x, y) = kx2ekxy












































































































34 Chapter 4 The Linear Approximation

Thus, we get

∂2 f

∂x2
(x, y) =

∂

∂x

[

ekxy + kxyekxy
]

= 2kyekxy + k2xy2ekxy

∂2 f

∂y∂x
(x, y) =

∂

∂y

[

ekxy + kxyekxy
]

= 2kxekxy + k2x2yekxy

∂2 f

∂x∂y
(x, y) =

∂

∂x

[

kx2ekxy
]

= 2kxekxy + k2x2yekxy

∂2 f

∂y2
(x, y) =

∂

∂y

[

kx2ekxy
]

= k2x3ekxy

In the previous example, observe that

∂2 f

∂x∂y
=
∂2 f

∂y∂x

This is in fact a general property of partial derivatives, subject to a continuity require-
ment, as follows.

THEOREM 1 (Clairaut’s Theorem)

If fxy and fyx are defined in some neighborhood of (a, b) and are both continuous at
(a, b), then

fxy(a, b) = fyx(a, b)

The proof is rather technical, and is thus omitted. If the continuity hypothesis on fxy

and fyx is dropped, the theorem is no longer true. See Exercise 3 below.

EXERCISE 1 Verify that f (x, y) = ln(x2 + y2) satisfies

fxx + fyy = 0, for (x, y) ! (0, 0)

EXERCISE 2 Verify that f (x, y) = xy satisfies

fxy = fyx, for x > 0

EXERCISE 3 Let f (x, y) =







xy
x2 − y2

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0).












































































































Section 4.3 The Tangent Plane 35

(a) Show that fx(0, y) = −y and fy(x, 0) = x.

(b) Show that fxy(0, 0) = −1 and fyx(0, 0) = 1. Hence fxy ! fyx.

(c) Explain why this does not contradict Clairaut’s theorem.

Higher-Order Partial Derivatives

Of course, we can take higher-order partial derivatives in the expected way. In par-
ticular, observe that f (x, y) has eight third partial derivatives. They are

fxxx, fxxy, fxyx, fxyy, fyxx, fyxy, fyyx, fyyy

Not surprisingly, Clairaut’s Theorem extends to higher-order partial derivatives as
well. That is, if they are defined in a neighborhood of a point (a, b) and are continuous
at (a, b), then the higher-order partial derivatives are equal regardless of the order the
partial derivatives are taken. For example,

fxxy(a, b) = fxyx(a, b) = fyxx(a, b)

For many situations, we will want to require that a function have continuous partial
derivatives of some order. Thus, we introduce some notation for this.

If the k-th partial derivatives of f (x1, . . . , xn) are continuous, then we write

f ∈ Ck

and say “ f is in class Ck.”

So, f (x, y) ∈ C2 means that f has continuous second partial derivatives, and therefore,
by Clairaut’s Theorem, we have that fxy = fyx.

4.3 The Tangent Plane

The surface of a sphere has a tangent plane at
each point P, namely the plane through P that
is orthogonal to the line joining P and the cen-
tre O. The tangent plane at P can be thought
of as the plane which best approximates the
surface of the sphere near P.

P

O

This concept can be generalized to a surface defined by an equation of the form

z = f (x, y)

Let C1 be the cross section y = b of the surface, that is, C1 is given by

z = f (x, b)












































































































36 Chapter 4 The Linear Approximation

It follows that
∂ f

∂x
(a, b) equals the slope

of the tangent line L1 of C1 at the point
P(a, b, f (a, b)). A similar interpretation holds

for
∂ f

∂y
(a, b) in terms of the cross section

z = f (a, y).
We provisionally define the tangent plane
to the surface z = f (x, y) at the point
P(a, b, f (a, b)) to be the plane which contains
the tangent lines L1 and L2 (refer to the fig-
ure).

x
y

z

P

L1

L2
C1

C2z = f (x, y)

(a, b)

In order to derive the equation of the tangent plane, we note that any (non-vertical)
plane through the point P(a, b, f (a, b)) has an equation of the form

z = f (a, b) + m(x − a) + n(y − b)

where m and n are constants. The intercept of this plane with the vertical plane y = b
is the line

z = f (a, b) + m(x − a) (4.2)

We require this line to coincide with L1. Thus the slope m of the line (4.2) must equal

the slope
∂ f

∂x
(a, b) of the line L1:

m =
∂ f

∂x
(a, b)

A similar argument yields

n =
∂ f

∂y
(a, b)

We make the following definition which we will formalize in Chapter 5.

DEFINITION

Tangent Plane

The tangent plane to z = f (x, y) at the point (a, b, f (a, b)) is

z = f (a, b) +
∂ f

∂x
(a, b)(x − a) +

∂ f

∂y
(a, b)(y − b)

EXERCISE 1 The graph of the function

f (x, y) =
√

x2 + y2

is the cone z =
√

x2 + y2. Find the equation of the tangent plane at the point (3,−4, 5).

EXERCISE 2 Show that the tangent plane at any point on the cone in Exercise 1 passes through the
origin.












































































































Section 4.4 Linear Approximation for z = f (x, y) 37

REMARK

In Exercise 2, you should note that a tangent plane does not exist at the vertex (0, 0, 0)
of the cone, since the cone is not “smooth” there. We shall discuss the question of
the existence of a tangent plane in Chapter 5.

4.4 Linear Approximation for z = f (x, y)

Review of the 1-D case

For a function f (x) the tangent line can be used to approximate the graph of the
function near the point of tangency. Recall that the equation of the tangent line to
y = f (x) at the point (a, f (a)) is

y = f (a) + f ′(a)(x − a)

The function La defined by

La(x) = f (a) + f ′(a)(x − a)

is called the linearization of f at a since La(x) approximates f (x) for x sufficiently
close to a.

For x sufficiently close to a, the approximation

f (x) ≈ La(x)

is called the linear approximation of f at a.

EXERCISE 1 Verify each approximation:

(a) sin x ≈ x, for x sufficiently close to 0,

(b)
√

1 + x ≈ 1 + 1
2
x, for x sufficiently close to 0,

(c) ln x ≈ (x − 1), for x sufficiently close to 1.

The 2-D case

For a function f (x, y), the tangent plane can be used to approximate the surface
z = f (x, y) near the point of tangency.












































































































38 Chapter 4 The Linear Approximation

DEFINITION

Linearization

Linear
Approximation

For a function f (x, y) we define the linearization
L(a,b)(x, y) of f at (a, b) by

L(a,b)(x, y) = f (a, b)+
∂ f

∂x
(a, b)(x−a)+

∂ f

∂y
(a, b)(y−b)

We call the approximation

f (x, y) ≈ L(a,b)(x, y)

the linear approximation of f (x, y) at (a, b).
x y

z

P

Q

(x, y)

z = f (x, y)

z = L(a,b)(x, y)

(a, b)

(

a, b, f (a, b)
)

EXAMPLE 1 Use the linear approximation to approximate
√

(0.95)3 + (1.98)3.

Solution: A choice of function and point of tangency must be made. Let

f (x, y) =
√

x3 + y3, and (a, b) = (1, 2)

The partial derivatives of f are

∂ f

∂x
=

3x2

2
√

x3 + y3
,

∂ f

∂y
=

3y2

2
√

x3 + y3

Thus, the linear approximation is

f (x, y) ≈ L(1,2)(x, y)

= f (1, 2) + fx(1, 2)(x − 1) + fy(1, 2)(y − 2)

= 3 +
1

2
(x − 1) + 2(y − 2) (4.3)

Hence,

√

(0.95)3 + (1.98)3 = f (0.95, 1.98) ≈ 3 +
1

2
(−0.05) + 2(−0.02) = 2.935

Note: The calculator value is 2.935943.

REMARK

Resist the temptation to expand the brackets and simplify in equation (4.3). The
bracketed terms represent small increments, and it is helpful to keep them separate.

EXERCISE 2 Calculate
√

sin
(

1
10

)

+ tan
(

3
4

)

approximately. Compare your answer with the value

from a calculator.












































































































Section 4.5 Linear Approximation in Higher Dimensions 39

Hint: Choose the point of tangency so that the increments in x and y do not exceed
1

10
. Use the approximate value 3.14 for π.

EXERCISE 3 Verify each approximation:

(a)
xy

x + y
≈

6

5
+

9

25
(x − 2) +

4

25
(y − 3), for (x, y) sufficiently close to (2, 3)

(b) ln(x2 + y) ≈ 2(x − 1) + y, for (x, y) sufficiently close to (1, 0)
(c) e3x−2y ≈ 1 + 3x − 2y, for (x, y) sufficiently close to (0, 0).

Increment Form of the Linear Approximation

Suppose that we know f (a, b) and want to calculate f (x, y) at a nearby point. Let

∆x = x − a, ∆y = y − b

and
∆ f = f (x, y) − f (a, b)

The linear approximation is

f (x, y) ≈ f (a, b) +
∂ f

∂x
(a, b)(x − a) +

∂ f

∂y
(a, b)(y − b)

This can be rearranged to yield

∆ f ≈
∂ f

∂x
(a, b)∆x +

∂ f

∂y
(a, b)∆y (4.4)

This gives an approximation for the change ∆ f in f (x, y) due to a change (∆x,∆y)
away from the point (a, b).

We shall refer to equation (4.4) as the increment form of the linear approximation.

EXERCISE 4 An isosceles triangle has base 4 m, and equal angles of π
4
. If the base is increased

by 16 cm, and the equal angles are decreased by 0.1 radians, estimate the change in
area.

4.5 Linear Approximation in Higher Dimensions

Linear Approximation in R3

Consider a function f (x, y, z). By analogy with the case of a function of two variables,
we define the linearization of f at a = (a, b, c) by

La(x, y, z) = f (a) + fx(a)(x − a) + fy(a)(y − b) + fz(a)(z − c)












































































































40 Chapter 4 The Linear Approximation

The notation is becoming cumbersome, but one can improve matters by noting that
the final three terms can be represented by the dot product of the vectors

(x − a, y − b, z − c) = (x, y, z) − (a, b, c), and ∇ f (a) =
(

fx(a), fy(a), fz(a)
)

The second vector is called the gradient of f at a.

Here are the formal definitions.

DEFINITION

Gradient

Suppose that f (x, y, z) has partial derivatives at a ∈ R3. The gradient of f at a is
defined by

∇ f (a) =
(

fx(a), fy(a), fz(a)
)

DEFINITION

Linearization

Linear
Approximation

Suppose that f (x), x ∈ R3, has partial derivatives at a ∈ R3. The linearization of f
at a is defined by

La(x) = f (a) + ∇ f (a) · (x − a) (4.5)

The linear approximation of f at a is

f (x) ≈ f (a) + ∇ f (a) · (x − a) (4.6)

EXAMPLE 1 Consider the function f defined by

f (x, y, z) =
√

x2 + y2 + z2

Find the gradient of f and the linear approximation for f at a = (1, 2,−2).

Solution: Differentiate to obtain

∇ f (x, y, z) =





x
√

x2 + y2 + z2
,

y
√

x2 + y2 + z2
,

z
√

x2 + y2 + z2





Now, evaluate ∇ f (x, y, z) at a = (1, 2,−2) to get

∇ f (a) =

(

1

3
,

2

3
,−

2

3

)

Thus,

La(x) = f (a) + ∇ f (a) · (x − a)

= 3 +
1

3
(x − 1) +

2

3
(y − 2) −

2

3
(z + 2)

So, the linear approximation for f at (1, 2,−2) is

f (x, y, z) ≈ 3 +
1

3
(x − 1) +

2

3
(y − 2) −

2

3
(z + 2)












































































































Chapter 4 Problem Set 41

EXERCISE 1 Use the linear approximation to estimate 4.99 × 7.01 × 9.99. Compare your answer
to the calculator value.

Linear Approximation in Rn

The advantage of using vector notation is that equations (4.5) and (4.6) hold for a
function of n variables f (x), x ∈ Rn. For arbitrary a ∈ Rn, we have

x − a = (x1 − a1, x2 − a2, . . . , xn − an)

and we define the gradient of f at a to be

∇ f (a) = (D1 f (a),D2 f (a), · · · ,Dn f (a))

Then, the increment form of the linear approximation for f (x) is

∆ f ≈ ∇ f (a) · ∆x

Observe that this formula even works when n = 1. That is, for a function g(t) of one
variable this gives ∇g(a) = g′(a) and the increment form of the linear approximation
is

∆g ≈ ∇g(a) · ∆x = g′(a)(x − a)

which is our familiar formula from Calculus 1.

For f (x, y) we have ∇ f (a, b) = ( fx(a, b), fy(a, b)) and the increment form of the linear
approximation is

∆ f ≈ ∇ f (a, b) · ∆(x, y) = fx(a, b)(x − a) + fy(a, b)(y − b)

which matches our work above. Hence, we see that this is a true generalization.

Chapter 4 Problem Set

1. Let f (x, y) =







sin(xy)

ln(x2 + y2 + 1)
for (x, y) ! (0, 0)

0 for (x, y) = (0, 0).

(a) Prove that fx(0, 0) and fy(0, 0) exist.

(b) Prove that f is not continuous at (0, 0).

2. Let f (x, y) =







x3

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0).

(a) Determine all points where f (x, y) is continuous.

(b) Find fx(0, 0) and fy(0, 0).

3. Find a function g(x, y) such that g(x, y) is continuous at
(0, 0), but gx(0, 0) and gy(0, 0) both do not exist. Justify
your answer.

4. Find fx(0, 0) and fy(0, 0) for

f (x, y) =







x3 − y3

x2 + y2
+ 1 if (x, y) ! (0, 0)

1 if (x, y) = (0, 0)

5. Let f (x, y) =
xy

x2 + y2
.

(a) Find the equation of the tangent plane of f at
(1, 2, 2/5).

(b) Approximate f (0.9, 2.1).

6. Find the linearization of the function at the given point.
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(a) f (x, y) = ln(x + 2y), (a, b) = (3,−1)

(b) f (x, y) =
√

sin 3x + 4 tan y, (a, b) = (0, π
4
)

(c) f (x, y, z) = ex+2y+3z, (a, b, c) = (1, 1,−1)

(d) f (x, y, z) = ln(x2 − yz), (a, b, c) = (2, 1, 3)

7. Use the linear approximation to approximate:

(a) (0.99e0.02)8

(b)
√

(4.02)2 + (3.95)2 + (2.01)2

(c)
√

e0.1 + 3 sin(0.05)

Compare your answers with the value from a calcula-
tor.

8. Find the first and second partial derivatives of

(a) f (x, y) =
√

2x2 − y

(b) g(x, y) = xex+cos y

9. Let f (x, y) =
xy

x2 + y2
.

(a) Find the equation of the tangent plane of f at
(2, 1, 2/5).

(b) Approximate f (1.9, 1.1).

10. A function g is defined by g(x, t) = f (x − 3t) where
f is a function of one variable. If f ′(2) = 3, calcu-
late gx(5, 1), gt(5, 1). Show that gt(x, t) = −3gx(x, t) in
general.

11. A function f is defined by f (x, y) = ye
x
y , y ! 0. Verify

that the second mixed partial derivatives are equal:

∂2 f

∂x∂y
=
∂2 f

∂y∂x

12. Determine the values of the constants α and β for
which the function u(x, t) = eαt sin βx satisfies the 1-
d heat equation

∂u

∂t
=
∂2u

∂x2

13. (a) Consider f defined by

f (x, y) =







x ln(x2 + 2y2), if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

Prove that fy is defined for all (x, y) ∈ R2, but that
fy is not continuous at (0, 0).

(b) Invent another function with this property.

14. Let f (x, y) =
√

|xy|.

(a) Calculate
∂ f
∂x

(1,−4),
∂ f
∂x

(0, 0),
∂ f
∂x

(0, 1) if they ex-
ist. At which of these points is it necessary to use
the definition of the partial derivative?

(b) At what points do the partial derivatives of f not
exist? Make a conjecture based on part (a), and
give a proof.

15. The temperature of a metal rod at position x, 0 ≤ x ≤ 1,
and at time t, t ≥ 0 is given by u(t, x) = 100e−t sin πx.
Find the rate of change of temperature with respect to
position when x = 3

4
and t = 1. Find the rate of change

of temperature with respect to time when x = 3
4

and
t = 1. Illustrate these rates of change by sketching the
cross sections x = 3

4
and t = 1.

16. Let u(x, t) denote the displacement (in mm) of a vi-
brating string at a point x on the string at time t. How
would you physically interpret the functions ut(x, t)
and ux(x, t)?

17. A silo consists of a circular cylinder of radius 5 me-
ters, and height 25 meters, capped by a hemisphere.
Suppose that the radius is decreased by 5 centimeters
and the height of the cylinder is increased by 10 cen-
timeters. Use the linear approximation to estimate the
change in volume.

18. If three resistors R1,R2,R3 are connected in parallel,
the total electrical resistance R is determined by

1

R
=

1

R1
+

1

R2
+

1

R3

If R1,R2 and R3 initially equal 100, 200 and 300 ohms,
and are increased by 1,2,4 ohms respectively, use the
linear approximation to calculate the change in R.
Compare with a direct calculation on a calculator.

19. Find all planes which are tangent to the surface
z = 1 − x2 − y2, and contain the line passing through
the points (1, 0, 2) and (0, 2, 2).

20. (a) Verify that u = Ae−(x−ct)2

, where A and c are con-
stants, satisfies the 1-d wave equation

utt = c2uxx (∗)

(b) Graph u versus x for t = 0, 1
c
, 2

c
, 3

c
, on the same

axes. With what speed does the wave move along
the x-axis?

(c) Find a solution of (∗) which describes a wave
moving to the left along the x-axis.

(d) Let f be a function of one variable with a contin-
uous second derivative. Verify that u = f (x − ct)
is a solution of the wave equation (∗).

21. Show that u(x, t) =

∫ x

2
√

t

0

e−s2

ds satisfies the 1-d heat

equation
∂u

∂t
=
∂2u

∂x2
. Sketch the level curves of u(x, t).

22. * (a) Give a function f (x, y) such that fyx = 0.

(b) Find all functions f (x, y) which have continuous
second partial derivatives, and satisfy fyx = 0.

(c) Suppose that u(x, t) is a function which has con-
tinuous second partial derivatives on R2 and
which satisfies the one dimensional wave equa-
tion

utt = c2uxx (∗)

where c is a constant. Determine how equation
(∗) is transformed under the change of indepen-
dent variables expressed by p = x+ ct, q = x− ct.
Using your answer to part (b), obtain the general
solution of the wave equation (∗), and compare
your answer with the special solutions discussed
in # 20.
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Chapter 5

Differentiable Functions

5.1 Definition of Differentiability

Now, our goal is to extend the concept of differentiability for functions of one variable
to functions of two variables. For a function of one variable, we saw that a function
g(x) is differentiable at x = a if g′(a) exists. From this, it is natural to wonder if the
existence of partial derivatives is enough to define the concept of differentiability for
f (x, y). Unfortunately, it isn’t. We saw in Example 4.1.3 that the concept of partial
derivatives does not match with the concept of differentiability from Calculus 1. In
particular, we saw a function whose partial derivatives exist at (0, 0) even though the
function is not continuous at (0, 0).

To define the concept of differentiability for f (x, y), we want to ensure that it has
the same properties as the concept of differentiability for functions of one variable.
In Calculus 1, we saw that if g(x) is differentiable at x = a, then graph of g(x) is
‘smooth’ at x = a (no cusps or jumps) and that the linear approximation is a good
approximation. In particular, if we define the error in the linear approximation to be

R1,a(x) = g(x) − La(x)

then we get the following theorem.

THEOREM 1 If g′(a) exists, then lim
x→a

|R1,a(x)|
|x − a|

= 0 where

R1,a(x) = g(x) − La(x) = g(x) − g(a) − g′(a)(x − a)

Proof: We have

|R1,a(x)|
|x − a|

=

∣
∣
∣
∣
∣

g(x) − g(a) − g′(a)(x − a)

x − a

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

g(x) − g(a)

x − a
− g′(a)

∣
∣
∣
∣
∣

The result follows from taking the limit as x→ a (details left as an exercise). !

43










































































































7年 9



44 Chapter 5 Differentiable Functions

Theorem 1 says that the error R1,a(x) tends to zero faster than the displacement |x−a|.
Moreover, it can be shown that if one replaces the tangent line y = La(x) by any other
straight line y = g(a) + m(x − a) through the point (a, g(a)), the error will not satisfy
the conclusion of the theorem. Thus, the property

lim
x→a

|R1,a(x)|
|x − a|

= 0

characterizes the tangent line at (a, g(a)) as the best straight line approximation to the
graph y = g(x) near (a, g(a)).

Therefore, to define differentiability for a function of two variables, we match this
definition.

DEFINITION

Differentiable

A function f (x, y) is differentiable at (a, b) if

lim
(x,y)→(a,b)

|R1,(a,b)(x, y)|
‖(x, y) − (a, b)‖

= 0

where
R1,(a,b)(x, y) = f (x, y) − L(a,b)(x, y)

As in the one dimensional case, we can prove that the only tangent plane z = f (a, b)+
c(x−a)+d(y−b) through the point (a, b, f (a, b) that has this property is z = L(a,b)(x, y).

THEOREM 2 If a function f (x, y) satisfies

lim
(x,y)→(a,b)

| f (x, y) − f (a, b) − c(x − a) − d(y − b)|
‖(x, y) − (a, b)‖

= 0

then c = fx(a, b) and d = fy(a, b).

Proof: Since

lim
(x,y)→(a,b)

| f (x, y) − f (a, b) − c(x − a) − d(y − b)|
‖(x, y) − (a, b)‖

= 0

the limit is 0 along any path. Therefore, along the path along y = b, we get

0 = lim
x→a

| f (x, b) − f (a, b) − c(x − a) − d(b − b)|
‖(x, b) − (a, b)‖

= lim
x→a

| f (x, b) − f (a, b) − c(x − a)|
|x − a|

= lim
x→a

∣
∣
∣
∣
∣

f (x, b) − f (a, b)

x − a
− c

∣
∣
∣
∣
∣

= fx(a, b) − c

c = fx(a, b)

Similarly, approaching along x = a we get that d = fy(a, b). !












































































































Section 5.1 Definition of Differentiability 45

This implies that the tangent plane gives the best linear approximation to the graph
z = f (x, y) near (a, b). Moreover, it tells us that the linear approximation is a “good
approximation” if and only if f is differentiable at (a, b).

REMARK

Observe that for the linear approximation to exist at (a, b) both partial derivatives of
f must exist at (a, b). However, both partial derivatives existing does not guarantee
that f will be differentiable. We say that the partial derivatives of f existing at (a, b)
is necessary, but not sufficient.

EXAMPLE 1 Determine whether f (x, y) =
√

|xy| is differentiable at (0, 0).

Solution: We first need to find L(0,0)(x, y). Hence, we need to find the partial deriva-
tives at (0, 0). We have

fx(0, 0) = lim
h→0

f (h, 0) − f (0, 0)

h
= lim

h→0

0 − 0

h
= 0

fy(0, 0) = lim
h→0

f (0, h) − f (0, 0)

h
= lim

h→0

0 − 0

h
= 0

Thus, both partial derivatives exist at (0, 0) and, since f (0, 0) = 0, the linear approxi-
mation is

L(0,0)(x, y) = 0

The error in the linear approximation is

R1,(0,0)(x, y) = f (x, y) − L(0,0)(x, y) =
√

|xy|

and the magnitude of the displacement is ‖(x, y) − (0, 0)‖ =
√

x2 + y2.

Therefore,
|R1,(0,0)(x, y)|
‖(x, y) − (0, 0)‖

=

√

|xy|
√

x2 + y2
, for (x, y) ! (0, 0)

We must determine whether

lim
(x,y)→(0,0)

√

|xy|
√

x2 + y2
= 0 (5.1)

As we saw with continuity, to prove the limit does not equal to 0, we do not need to
prove that the limit does not exist. We just need to prove that there exists a single
path that gives a limit other than 0. In this case, approaching along the line y = x
gives

lim
(x,y)→(0,0)

√

|xy|
√

x2 + y2
= lim

x→0

√

|x|2
√

2x2
= lim

x→0

|x|
√

2|x|
=

1
√

2

so that

lim
(x,y)→(0,0)

|R1,(0,0)(x, y)|
‖(x, y) − (0, 0)‖

! 0

It follows that (5.1) is false. Thus, by definition, the given function f is not differen-
tiable at (0, 0).












































































































46 Chapter 5 Differentiable Functions

Observe that in this example we have that the partial derivatives at (0, 0) both exist,
but

lim
(x,y)→(0,0)

|R1,(0,0)(x, y)|
‖(x, y) − (0, 0)‖

! 0

So, the plane z = L(0,0)(x, y) = 0 does not give a good approximation to the surface

z =
√

|xy| near the origin. This can be explained geometrically. The vertical plane

y = x intersects the surface z =
√

|xy| in the curve z = |x| which has a corner at x = 0
and hence no tangent line. This means that the surface is not “smooth” at (0, 0, 0),
and hence the plane z = L(0,0)(x, y) = 0 cannot be interpreted as a tangent plane.

EXAMPLE 2 Show that f (x, y) = x2 + y2 is differentiable at (a, b) = (1, 0).

Solution: We have fx = 2x and fy = 2y, so at (1, 0) we get fx(1, 0) = 2 and fy(1, 0) =
0. Thus, we have

L(1,0)(x, y) = f (1, 0) + fx(1, 0)(x − 1) + fy(1, 0)(y − 0)

= 1 + 2(x − 1) + 0(y − 0) = 1 + 2(x − 1)

The error in the linear approximation is

R1,(1,0)(x, y) = f (x, y) − L(1,0)(x, y)

= x2 + y2 − (1 + 2(x − 1))

= x2 − 2x + 1 + y2 = (x − 1)2 + y2

Therefore,
|R1,(1,0)(x, y)|
‖(x, y) − (1, 0)‖

=
(x − 1)2 + y2

√

(x − 1)2 + y2
=

√

(x − 1)2 + y2

Hence,

lim
(x,y)→(1,0)

|R1,(1,0)(x, y)|
‖(x, y) − (1, 0)‖

= lim
(x,y)→(1,0)

√

(x − 1)2 + y2 = 0

by the Continuity Theorems. So, f (x, y) is differentiable at (1, 0).

EXAMPLE 3 Determine whether f (x, y) =







x2y

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

is differentiable at (0, 0).

Solution: We have

fx(0, 0) = lim
h→0

f (0 + h, 0) − f (0, 0)

h
= lim

h→0

h2(0)

h2+02 − 0

h
= 0

fy(0, 0) = lim
h→0

f (0, 0 + h) − f (0, 0)

h
= lim

h→0

02(h)

02+h2 − 0

h
= 0

So, the error in the linear approximation is

R1,(0,0)(x, y) = f (x, y) − f (0, 0) − fx(0, 0)(x − 0) − fy(0, 0)(y − 0) =
x2y

x2 + y2












































































































Section 5.1 Definition of Differentiability 47

For f to be differentiable at (0, 0) we need lim
(x,y)→(0,0)

|R1,(0,0)(x, y)|
√

x2 + y2
= 0. But, observe

that if we approach the limit along y = x, we get

lim
x→0

|R1,(0,0)(x, x)|
√

x2 + x2
= lim

x→0

|x3|
(x2 + x2)3/2

= lim
x→0

|x3|
(2x2)3/2

= lim
x→0

|x3|
23/2|x3|

= lim
x→0

1

23/2
=

1

23/2

Therefore, the limit can not equal 0 and hence f is not differentiable at (0, 0).

EXAMPLE 4 Determine whether g(x, y) =







x2y2

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

is differentiable at (0, 0).

Solution: We have

gx(0, 0) = lim
h→0

g(0 + h, 0) − g(0, 0)

h
= lim

h→0

h2(0)2

h2+02 − 0

h
= 0

gy(0, 0) = lim
h→0

g(0, 0 + h) − g(0, 0)

h
= lim

h→0

02(h)2

02+h2 − 0

h
= 0

So, the error in the linear approximation is

R1,(0,0)(x, y) = g(x, y) − g(0, 0) − gx(0, 0)(x − 0) − gy(0, 0)(y − 0) =
x2y2

x2 + y2

For g to be differentiable at (0, 0) we need lim
(x,y)→(0,0)

|R1,(0,0)(x, y)|
√

x2 + y2
= 0. If we approach

the limit along y = mx, we get

lim
x→0

|R1,(0,0)(x,mx)|
√

x2 + (mx)2
= lim

x→0

m2x4

(x2 + m2x2)3/2

= lim
x→0

m2x4

([1 + m2]x2)3/2

= lim
x→0

m2x4

(1 + m2)3/2|x3|

= lim
x→0

m2|x|
(1 + m2)3/2

= 0












































































































48 Chapter 5 Differentiable Functions

So, perhaps the limit exists. We try to apply the Squeeze Theorem. We consider

∣
∣
∣
∣
∣
∣

x2y2

(x2 + y2)3/2
− 0

∣
∣
∣
∣
∣
∣
≤

(x2 + y2)(x2 + y2)

(x2 + y2)3/2

=
(x2 + y2)2

(x2 + y2)3/2

= (x2 + y2)1/2

Since
lim

(x,y)→(0,0)
(x2 + y2)1/2 = 0

by the Continuity Theorems, we get by the Squeeze Theorem that

lim
(x,y)→(0,0)

|R1,(0,0)(x, y)|
√

x2 + y2
= 0

Hence, g is differentiable at (0, 0).

REMARK

In Example 3.1.1 we showed that f (x, y) =







x2y

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

is continuous

at (0, 0). So, this is an example of a function that is continuous but not differentiable
at a point. In the next section, we will prove that if a function is differentiable at a
point, then it must be continuous at that point to match what we saw in Calculus 1.

EXERCISE 1 Prove that

f (x, y) =







x3

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

is not differentiable at (0, 0).

EXERCISE 2 Prove that f (x, y) = |xy| is differentiable at (0, 0).

EXERCISE 3 Prove that f (x, y) = |xy| is not differentiable at (0, 1).

We can now give a formal definition of the tangent plane of z = f (x, y).












































































































Section 5.2 Differentiability and Continuity 49

DEFINITION

Tangent Plane

Consider a function f (x, y) which is differentiable at (a, b). The tangent plane of
the surface z = f (x, y) at (a, b, f (a, b)) is the graph of the linearization. That is, the
tangent plane is given by

z = f (a, b) +
∂ f

∂x
(a, b)(x − a) +

∂ f

∂y
(a, b)(y − b)

Since f is assumed to be differentiable at (a, b), by Theorem 2, the tangent plane is
the plane that best approximates the surface near the point (a, b, f (a, b)). In this case,
we say that at the point (a, b, f (a, b)) the surface z = f (x, y) is smooth.

EXERCISE 4 Invent a function f (x, y) whose graph z = f (x, y) is not smooth at (1, 2, f (1, 2)). That
is, invent a function which is not differentiable at (1, 2).

5.2 Differentiability and Continuity

Recall from Calculus 1 that if g(x) is differentiable at x = a, then g is continuous at
a. We now prove that this result also holds for scalar functions f (x, y).

THEOREM 1 If f (x, y) is differentiable at (a, b), then f is continuous at (a, b).

Proof: The error R1,(a,b)(x, y) is defined by

R1,(a,b)(x, y) = f (x, y) − L(a,b)(x, y)

Using the definition of L(a,b)(x, y), this equation can be rearranged to read

f (x, y) = f (a, b) + ∇ f (a, b) · (x − a, y − b) + R1,(a,b)(x, y) (5.2)

We can write

R1,(a,b)(x, y) =
R1,(a,b)(x, y)

‖(x, y) − (a, b)‖
‖(x, y) − (a, b)‖, for (x, y) ! (a, b)

Since f is differentiable and by the Limit Theorems, we get

lim
(x,y)→(a,b)

R1,(a,b)(x, y) = 0

It now follows from equation (5.2) that

lim
(x,y)→(a,b)

f (x, y) = f (a, b) + 0 + 0 = f (a, b)

and so by definition, f is continuous at (a, b). !












































































































50 Chapter 5 Differentiable Functions

EXERCISE 1 Suppose that f (x, y) is not continuous at (a, b). Can you draw a conclusion about
whether f is differentiable at (a, b)?

EXERCISE 2 Give an example of a function f (x, y) that is continuous but not differentiable at (a, b).
This shows that the converse of Theorem 1 is not true.

5.3 Continuous Partial Derivatives and Differentiability

We need an efficient way of proving that a given function f is differentiable at a
typical point. In this section, we present a theorem for this purpose, which states that
if the partial derivatives of f (x, y) are continuous at (a, b), then f is differentiable at
(a, b).

To prove this theorem, we will require an extremely important theorem from Calcu-
lus 1, the Mean Value Theorem.

THEOREM 1 (Mean Value Theorem)

If f (t) is continuous on the closed interval [t1, t2] and f is differentiable on the open
interval (t1, t2), then there exists t0 ∈ (t1, t2) such that

f (t2) − f (t1) = f ′(t0)(t2 − t1)

THEOREM 2 If
∂ f

∂x
and
∂ f

∂y
are continuous at (a, b), then f (x, y) is differentiable at (a, b).

Proof: We derive an expression for the error R1,(a,b)(x, y), given by

R1,(a,b)(x, y) = f (x, y) − f (a, b) − fx(a, b)(x − a) − fy(a, b)(y − b) (5.3)

Since fx and fy are continuous then fx and fy exist in some neighborhood B(a, b). For
(x, y) ∈ B(a, b), we write

f (x, y) − f (a, b) =
[

f (x, y) − f (a, y)
]

+
[

f (a, y) − f (a, b)
]

(5.4)

by adding and subtracting f (a, y). The Mean Value Theorem can be applied to each
bracket, since one variable is held fixed, and the partial derivatives are assumed to
exist. For the first bracket:

f (x, y) − f (a, y) = fx(x, y)(x − a)

where x lies between a and x. By adding and subtracting fx(a, b)(x − a), we obtain

f (x, y) − f (a, y) = fx(a, b)(x − a) + A(x − a) (5.5)












































































































Section 5.3 Continuous Partial Derivatives and Differentiability 51

where
A = fx(x, y) − fx(a, b) (5.6)

Similarly for the second bracket:

f (a, y) − f (a, b) = fy(a, y)(y − b)

= fy(a, b)(y − b) + B(y − b) (5.7)

where
B = fy(a, y) − fy(a, b) (5.8)

and y lies between b and y.

Substitute equations (5.5) and (5.7) into (5.4) and then substitute equation (5.4) into
(5.3) to obtain

R1,(a,b)(x, y) = A(x − a) + B(y − b)

where A and B are given by equations (5.6) and (5.8). It follows by the triangle
inequality that

|R1,(a,b)(x, y)|
‖(x, y) − (a, b)‖

≤
|A||x − a|

√

(x − a)2 + (y − b)2
+

|B||y − b|
√

(x − a)2 + (y − b)2

≤ |A| + |B| (5.9)

We can now apply the Squeeze Theorem with L = 0 and B(x, y) = |A| + |B|.

As (x, y)→ (a, b), it follows that

(x, y)→ (a, b) and (a, y)→ (a, b)

Since fx and fy are continuous at (a, b), it follows from equations (5.6) and (5.8) that

lim
(x,y)→(a,b)

A = 0 and lim
(x,y)→(a,b)

B = 0

Equation (5.9) and the Squeeze Theorem now imply

lim
(x,y)→(a,b)

|R1,(a,b)(x, y)|
‖(x, y) − (a, b)‖

= 0

so that f is differentiable at (a, b), by definition. !

REMARK

The converse of Theorem 2 is not true. That is, f (x, y) being differentiable at (a, b)
does not imply that fx and fy are both continuous at (a, b).












































































































52 Chapter 5 Differentiable Functions

EXAMPLE 1 Determine at which points f (x, y) = (x2 + y2)2/3 is differentiable.

Solution: By differentiation

∂ f

∂x
=

4x

3(x2 + y2)1/3
, for (x, y) ! (0, 0)

By inspection, using the Continuity Theorems,
∂ f

∂x
is continuous for all (x, y) ! (0, 0).

By symmetry, the same conclusion holds for
∂ f

∂y
. It follows from Theorem 2 that f

is differentiable for all (x, y) ! (0, 0).

At the point (0, 0), it is not clear whether the partial derivatives exist and one has to
use the definition of partial derivative. Then one has to use the definition of differ-
entiable function, as in Example 5.1.1. The conclusion is that f is differentiable at
(0, 0).

EXERCISE 1 Prove that f (x, y) = (x2 + y2)2/3 is differentiable at (0, 0).

EXERCISE 2 Prove that if f (x, y) ∈ C2 at (a, b), then f is continuous at (a, b).

Summary

Theorem 2 makes it easy to prove that a function f is differentiable at a typical point.
One simply differentiates f to obtain the partial derivatives fx, fy, and then checks that
the partials are continuous functions by inspection, referring to the Continuity The-
orems, as in Section 3.2. It is only necessary to use the definition of a differentiable
function at an exceptional point.

Generalization

The definition of a differentiable function and theorems 1 and 2 are valid for functions
of n variables. The only change is that there are n partial derivatives,

∂ f

∂x1

,
∂ f

∂x2

, · · · ,
∂ f

∂xn












































































































Section 5.4 Linear Approximation Revisited 53

5.4 Linear Approximation Revisited

The error in the linear approximation for f (x, y) is defined by

R1,(a,b)(x, y) = f (x, y) − L(a,b)(x, y)

where
L(a,b)(x, y) = f (a, b) + ∇ f (a, b) · ((x, y) − (a, b))

It is convenient to rearrange the definition of R1,(a,b)(x, y) to read

f (x, y) = f (a, b) + ∇ f (a, b) · (x − a, y − b) + R1,(a,b)(x, y) (5.10)

The linear approximation

f (x, y) ≈ f (a, b) + ∇ f (a, b) · (x − a, y − b) (5.11)

for (x, y) sufficiently close to (a, b), arises if one neglects the error term. In general,
one has no information about R1,(a,b)(x, y), and so it is not clear whether the approxi-
mation is reasonable. However, Theorem 2 provides an important piece of informa-
tion about R1,(a,b)(x, y), namely that if the partial derivatives of f are continuous at
(a, b), then f is differentiable and hence

lim
(x,y)→(a,b)

|R1,(a,b)(x, y)|
‖(x, y) − (a, b)‖

= 0

In this case, the approximation (5.11) is reasonable for (x, y) sufficiently close to
(a, b), and we say that L(a,b)(x, y) is a good approximation of f (x, y) near (a, b).

EXAMPLE 1 Discuss the validity of the approximation

(xy)1/3 ≈ 2 +
1

3
(x − 2) +

1

6
(y − 4)

Solution: Let f (x, y) = (xy)1/3. By differentiation,

∇ f (x, y) =

(

1

3
x−

2
3 y

1
3 ,

1

3
x

1
3 y−

2
3

)

so ∇ f (2, 4) =
(

1
3
, 1

6

)

. With (a, b) = (2, 4), equation (5.10) becomes

(xy)
1
3 = 2 +

1

3
(x − 2) +

1

6
(y − 4) + R1,(2,4)(x, y)

Using the Continuity Theorems we see that f has continuous partials at the point
(2, 4). Thus,

lim
(x,y)→(2,4)

|R1,(2,4)(x, y)|
√

(x − 2)2 + (y − 4)2
= 0

It follows that for (x, y) sufficiently close to (2, 4), we may neglect R1,(2,4)(x, y). Thus,

(xy)
1
3 ≈ 2 +

1

3
(x − 2) +

1

6
(y − 4)

gives a good approximation for (x, y) sufficiently close to (2, 4).












































































































54 Chapter 5 Differentiable Functions

EXERCISE 1 Discuss the validity of the approximation

√

1 + 3 tan x + sin y ≈ 2 +
3

2

(

x −
π

4

)

+
1

4
y

Note that approximation is a recurring theme in calculus, and the equation

f (x) = f (a) + ∇ f (a) · (x − a) + R1,a(x)

is of fundamental importance. In Chapter 8, we shall find out more about the error
term R1,a(x) in terms of the second partial derivatives.

EXERCISE 2 For each of the following either give an example to prove that the statement is false,
or justify why the statement is true.

(a) If f is not continuous at (0, 0), then fx and fy cannot both be continuous at
(0, 0).

(b) If f is continuous at (0, 0) and both fx(0, 0) and fy(0, 0) exist, then f is differ-
entiable at (0, 0).

(c) If f is not differentiable at (0, 0), then at least one of fx(0, 0) or fy(0, 0) does
not exist.

(d) If f is not differentiable at (0, 0), then f is not continuous at (0, 0).

(e) If f is differentiable at (0, 0), then both fx(0, 0) and fy(0, 0) exist.

(f) If f is differentiable at (0, 0), then fx and fy are both continuous at (0, 0).












































































































Section 5.4 Linear Approximation Revisited 55

Chapter 5 Problem Set

1. Prove that f (x, y) = x(|y| − 1) is differentiable at (0, 0).

2. Prove that f (x, y) = x|y−1| is not differentiable at (1, 1).

3. (a) Sketch the surface z = |x−y| inR3. At what points
does the surface not have a tangent plane?

(b) Verify that the partial derivatives of the function
f (x, y) = |x− y| do not exist at the points found in
(a).

Note: This implies that f is not differentiable at these
points, as expected from (a).

4. For each function

(a) Use the definition to determine whether f is dif-
ferentiable at (0, 0).

(b) On the basis of your answer in (a), can you use
one of the theorems to draw a conclusion con-
cerning the continuity of f at (0, 0)?

(c) On the basis of your answer in (a), can you use
one of the theorems to draw a conclusion con-
cerning the continuity of fx and fy at (0, 0)?

(i) f (x, y) = (xy)2/3

(ii) f (x, y) = (xy)1/3

(iii) f (x, y) = |x|
1
2 |y|

3
2

(iv) f (x, y) =







x3 + y4

x2 + y2
for (x, y) ! (0, 0)

0 for (x, y) = (0, 0)

5. For each of the following functions, determine if f is
differentiable at (0, 0).

(a) f (x, y) =







x4 + y4

x2 + y2
+ 1 if (x, y) ! (0, 0)

1 if (x, y) = (0, 0)

(b) f (x, y) =







x|y|
√

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

6. Let f (x, y) =







x3 − y4

x2 + y2
+ 1 if (x, y) ! (0, 0)

1 if (x, y) = (0, 0)

.

Determine all points where f is differentiable.

7. Let f (x, y) =







xy2 + y3

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

(a) Prove that f is continuous at (0, 0).

(b) Determine all points where f is differentiable.

8. Determine whether the functions in #4 are differen-
tiable at (0, a), a ! 0.
Hint: Does fx(0, a) exist? Consider the cross-section
y = a to get a geometric interpretation.

9. Determine all points where f is differentiable.

(a) f (x, y) =







x3 + y3

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

(b) g(x, y) = |x|1/2

10. (a) Invent a function f (x, y) which is continuous on
R2 but not differentiable at (1, 2). Sketch the sur-
face z = f (x, y).

(b) Invent a function f (x, y) which is continuous on
R2 but not differentiable at all points of the circle
x2 + y2 = 1. Sketch the surface z = f (x, y).

11. (a) Find a function f (x, y) such that f (x, y) is contin-
uous at (0, 0), but fx(0, 0) and fy(0, 0) both do not
exist. Justify your answer.

(b) Find a function g(x, y) such that gx(0, 0) and
gy(0, 0) both exist at (0, 0), but g(x, y) is not con-
tinuous at (0, 0). Justify your answer.

12. Let f (x, y) =







x4y2

x2 + y2
+ 1 if (x, y) ! (0, 0)

1 if (x, y) = (0, 0).

(a) Determine fx(0, 0) and fy(0, 0).

(b) Determine fx(x, y) for all (x, y) ! (0, 0).

(c) Determine if fx is continuous at (0, 0).

13. Consider the theorem: If f (x, y) is differentiable at
(a, b) then f is continuous at (a, b). Give a counterex-
ample to show that the converse of the theorem is false.

14. Prove that if fxx, fxy, fyx and fyy are continuous at (a, b),
then fx, fy and f are continuous at (a, b).
Hint: Apply the theorems relating to differentiability.

15. * Let f (x, y) = |x|r |y|s, where r, s are positive numbers.

(a) For what values of r and s is f differentiable at
(0,0)?

(b) For what values of r and s is f differentiable on
R2?

16. * Prove that if f satisfies | f (x, y)| ≤ x2 + y2 for all
(x, y) ∈ R2, then f is differentiable at (0,0).










































































































ˋ

ˋ

f_p

ytyfxylaoFl.tf.pl0，0 1















































































































f y1 1 f1，1 o

f x y
h⼼ y

f 想 the fix芯 fyu1 想扣⼀
⼆想 0

if fi.ME
0

⼈ y f 以 ⼼ yo notdiff
o X

咋 做 如 咖

咏 洲

x

xy1 11tx
⼆xyl

蕊 i.int inz.NtiyXapiaehdgimx

蕊 𦇝 䲜 ck.laDiy时
襷

⼼

Kfxckk
想fnkjfk.la以

Efy to lkthtltkHo h
怸品中Let fyiz.li0 El
1 DNE

愀⼭ 1 2䖇 01

i second derivative is out.ft.tn

䉹
䯁燕晶藏燕⼋点占⼆0

i.is dff















































































































in
以 f 4奷炏州以⽐44⽐啊 up two
lxyyufyzlx4t4pcxyy

lxyyliplxptwnglxyyz.lica fu bycontinuity
theorems thesefunction

wttxptwnsfyco.no
⼈⼼叫 f o

y u

谈 𢝵
fyno0 想 fR.iyFflxp h.jp

⼆ yi to ⽐7 1
赢 0 diff Roy ⼆䖇 1⼗⼆感

andf.differentlySincedfnontef
飍⼈欒 o⼼ 未知

吵 fxixp.IE y squeeze
theorem

liman州 州ifdfftcopfffxcxpixtiiigi.io
flo f⼼0 NE
b don'tknowwhether at ⼀个想 然與

嫠赞
焉

⼼咋㗠 鬱 䬔 想

以未知 ⼈以no0 蕊 0

iii ca diff
惢 叫飈 it

⼆点贰贰池品藏about
approachdogymx

iv v1fx 奖品 2然 点⼀the i.ME

notdeff
⼈⼆otxy
gpaddogymx.imdependonmlbNi.fnpisdfyd.isN

















































































































i

f 想 t h o

f fjgf h 0

⼈ 刚 1

赢 1器t涉品爕道11蕊少㡭
fxcxy 恐infoa 想𠘕 想hiioogpoadndoyyzm.ME

惢 㖄𠘕 蕊 it ⼆燕 ⼼
fxixpliidgdoumntgatcooatcx.pe

PNE

iii fxytlyiyiiti

䲅

和 噝 婴 凝 ⼼

fxcoiih lzfohjti
DNE.caappoaehdongy o

恐共⼆
candidatelimit Lo

蕊叫憋⼈恐 il
0光看的⼈否有

if fxxexist⼆盐 i iki.us lxyFfxcxpfxlabfxxiabcxg fxylxpy
E yy.tn fay is
⼆点㖄 i.fxcxpfxlabzfcxay.byX

oyfgmy_i not at coD

dudewhetherfdffat ⼼ 苦 diff
𪈳 䖇

恐 䬔

林 班以以 off

占in
毖品 ino前 ⼆ Ii⼆毖品 ǐn
⼆期

i10

以 以

dependon mi.ME
⼆燕 lyil















































































































aiig iaupg.mil ⼼

fx.yizxyi.fx.lyis definedeverywhereexceptpossibly at灬
ˋ

checkwhether it isdiffatco07
fx 前台飚 fto fo07 1
f 笳啊中 flo0 1
⼈ lxp otxy xy
R.co 叫 f y 2 吵 流 𢝵 i

感 x y 热 h

蕊

啝 ⼼ 流

o

㗊 i 嚠 恐䴏州 fyi 杰 1
⼆盐 iy 想 ⼀ ⼤

器 ⼀恐飚 想 𦯷烈
以 fnp4xjiytxjzxcxylimitdydonm.cn
by灬 fan existifmy isnotdff'at

苾品 ⽐计划以戏⽐b 遇到绝对值先拆分或去绝对值 形式

lxyigcx.pt瑟
加 o

x o

fo fi ii ⼀ 击
fcofiicxjif.io

yyyy

装竞⼆

fxisdfdexq.tn
臧为0

fysdfnderghrefxco.pe

想些 ANE



Chapter 6

The Chain Rule

6.1 Basic Chain Rule in Two Dimensions

Review of the Chain Rule for f(x(t))

Let T = f (x) be the temperature of a heated metal rod as a function of the position x.
An ant runs on the rod with its position given by x = x(t) as a function of time t. We
want to find an expression for the rate of change of temperature with respect to time
as experienced by the ant.

Observe that at any time t, the temperature at the ant’s location is given by the com-
position of functions

T (t) = f (x(t))

Thus, the rate of change of temperature with respect to time as experienced by the
ant is given by the derivative of this with respect to t. That is

T ′(t) = f ′(x(t))x′(t) (6.1)

If we rewrite this using the Leibniz form of the Chain Rule, we get

dT

dt
=

dT

dx

dx

dt
(6.2)

↑ ↑
T as a composite of t T as a function of x

Observe that this involves an abuse of notation, since T is used in two different con-
texts. It is essential in what follows to understand these different ways of writing the
1-D Chain Rule.
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Section 6.1 Basic Chain Rule in Two Dimensions 57

The Chain Rule for f(x(t), y(t))

In order to provide a physical context, suppose that the
surface temperature of a pond is T = f (x, y), as a func-
tion of position (x, y). A duck swims on the pond with its
position given by

x = x(t), y = y(t)

as a function of time t. Find an expression for the rate
of change of temperature with respect to time as experi-
enced by the duck.

x

y

path of duck

(

x(t), y(t)
)

The temperature experienced by the duck as a function of time t is given by the
composition of functions

T (t) = f (x(t), y(t))

In a time change ∆t, x and y change by

∆x = x(t + ∆t) − x(t), ∆y = y(t + ∆t) − y(t)

By the increment form of the linear approximation, the change in T corresponding to
changes ∆x and ∆y is approximated by

∆T ≈
∂T

∂x
∆x +

∂T

∂y
∆y

for ∆x and ∆y sufficiently small. Divide by ∆t, let ∆t → 0, and use the definition
of the derivative to get dT

dt
on the left side of the equation. Assuming that T (x, y) is

differentiable at (x, y), then as ∆x and ∆y → 0, the error in the linear approximation
tends to zero, and so the approximation becomes increasingly accurate, leading to

dT

dt
=
∂T

∂x

dx

dt
+
∂T

∂y

dy

dt
(6.3)

↑ ↖ ↗
T as a composite T as a function of x and y

function of t

This is the simplest example of the Chain Rule in two dimensions, and should be
compared with equation (6.2). A precise form of equation (6.3), which avoids abuse
of notation, is

d

dt
f
(

x(t), y(t)
)

= fx

(

x(t), y(t)
)

x′(t) + fy

(

x(t), y(t)
)

y′(t) (6.4)

which should be compared with equation (6.1). Alternatively, define the composite
function T by

T (t) = f (x(t), y(t))

and write
T ′(t) = fx(x(t), y(t))x′(t) + fy(x(t), y(t))y′(t) (6.5)

Note that fx(x(t), y(t)) is the partial derivative of the function f (x, y) with respect to
x, evaluated at (x(t), y(t)). In order to be able to apply the Chain Rule, it is important
to study and understand both forms (6.3) and (6.4)/(6.5).












































































































58 Chapter 6 The Chain Rule

REMARK

The preceding “derivation” is intended to make the Chain Rule plausible, but is NOT
a proof. The difficulty lies in the approximation sign ≈. This can be remedied by
keeping track of the error in the linear approximation and leads to a proof. Note that
a hypothesis on the function f , stronger than existence of the partial derivatives, is
required.

THEOREM 1 (Chain Rule)

Let G(t) = f (x(t), y(t)), and let a = x(t0) and b = y(t0). If f is differentiable at (a, b)
and x′(t0) and y′(t0) exist, then G′(t0) exists and is given by

G′(t0) = fx(a, b)x′(t0) + fy(a, b)y′(t0)

Proof: By definition of the derivative,

G′(t0) = lim
t→t0

G(t) −G(t0)

t − t0

(6.6)

provided that this limit exists. By definition of G(t),

G(t) −G(t0) = f (x(t), y(t)) − f (x(t0), y(t0)) (6.7)

Since f is differentiable we can write

f (x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) + R1,(a,b)(x, y) (6.8)

where

lim
(x,y)→(a,b)

|R1,(a,b)(x, y)|
√

(x − a)2 + (y − b)2
= 0 (6.9)

Since a = x(t0), b = y(t0), it follows from equations (6.7) and (6.8) that

G(t) −G(t0)

t − t0

= fx(a, b)

[

x(t) − x(t0)

t − t0

]

+ fy(a, b)

[

y(t) − y(t0)

t − t0

]

+
R1,(a,b)(x(t), y(t))

t − t0

(6.10)
You can now see the Chain Rule taking shape. We have to prove that

lim
t→t0

|R1,(a,b)(x(t), y(t))|
|t − t0|

= 0

Define E(x, y) by

E(x, y) =







R1,(a,b)(x, y)
√

(x − a)2 + (y − b)2
if (x, y) ! (a, b)

0 if (x, y) = (a, b)

By equation (6.9) and the definition of continuity, E is continuous at (a, b).












































































































Section 6.1 Basic Chain Rule in Two Dimensions 59

From the definition of E,

R1,(a,b)(x, y) = E(x, y)
√

(x − a)2 + (y − b)2, for all (x, y)

Since a = x(t0), and b = y(t0),

∣
∣
∣
∣R1,(a,b)

(

x(t), y(t)
)∣∣
∣
∣

|t − t0|
=

∣
∣
∣
∣E

(

x(t), y(t)
)∣∣
∣
∣

√
[

x(t) − x(t0)

t − t0

]2

+

[

y(t) − y(t0)

t − t0

]2

Since x′(t0) and y′(t0) exist and the fact that E is continuous at (a, b) we get

lim
t→t0

∣
∣
∣
∣R1,(a,b)

(

x(t), y(t)
)∣∣
∣
∣

|t − t0|
= E

(

x(t0), y(t0)
) √

[x′(t0)]2 + [y′(t0)]2 = 0

since E(a, b) = 0.

It now follows from equation (6.6) and (6.10) that G′(t0) exists, and is given by the
desired chain rule formula. !

REMARK

When first studying the Chain Rule you might think that hypothesis that f is differ-
entiable could be replaced by the weaker hypothesis that fx(a, b) and fy(a, b) exist.
Exercise 1 shows that this is not the case.

EXERCISE 1 With reference to the theorem, let

f (x, y) = (xy)
1
3 , x(t) = t, y(t) = t2

Define G(t) = f (x(t), y(t)) and show that G′(0) = 1. Further show that fx(0, 0) = 0
and fy(0, 0) = 0, so that the Chain Rule fails. Draw a conclusion about f at (0, 0).

REMARK

In practice it is convenient to use stronger hypotheses in the Chain Rule. In particular,
we usually assume that f has continuous partial derivatives at (a, b) and x′(t) and y′(t)
are both continuous at t0. This also allows one to obtain the stronger conclusion that
G′(t) is continuous at t0. These hypotheses can usually be checked quickly, either
by using the Continuity Theorems, or in more theoretical situations, by using given
information.
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60 Chapter 6 The Chain Rule

EXAMPLE 1 Suppose that the temperature at position (x, y) in a pond is

T (x, y) = 10e−
1
10 (x2+y2)

The path of a duck swimming on the pond is

x(t) = 2 cos t, y(t) = 4 sin t

Find the rate of change of the pond’s temperature as experienced by the duck at time

t =
3π

4
.

Solution: Notice that the temperature along the duck’s path is given by

T (t) = T (x(t), y(t))

Since T , x and y are differentiable the Chain Rule gives

dT

dt
=
∂T

∂x

dx

dt
+
∂T

∂y

dy

dt

Calculating
dx

dt
and

dy

dt
at t =

3π

4
, we obtain

dx

dt

(

3π

4

)

= −
√

2,
dy

dt

(

3π

4

)

= −2
√

2

At t =
3π

4
, the position of the duck is (x, y) = (−

√
2, 2
√

2). Calculate
∂T

∂x
and
∂T

∂y
at

(−
√

2, 2
√

2), obtaining

∂T

∂x
(−
√

2, 2
√

2) =
2
√

2

e
,
∂T

∂y
(−
√

2, 2
√

2) = −
4
√

2

e

So, the Chain Rule gives

dT

dt

(

3π

4

)

=





2
√

2

e



 (−
√

2) +





−4
√

2

e



 (−2
√

2) =
12

e

degrees/unit time.
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REMARK

One can interpret the result geometrically in
terms of the path of the duck and the level
curves of the temperature function (the isother-
mal curves).
The level curves T = 10

e
, T = T1 >

10
e

and

T = T2 <
10
e

are shown. The path of the duck

is an ellipse. At time t = 3π
4

, the duck is moving

from the region with T < 10
e

to the region with

T = 10
e

. Hence, we expect that
dT

dt
> 0.

x

y
Duck at t = 3π

4 Path of duck

T1

T2

T = 10
e

EXERCISE 2 Let
T (t) = ln(1 + x2 + y2), with x(t) = et sin t, y(t) = 2et cos t

Calculate
dT

dt
when t = 0 in two ways, firstly by substituting x and y in T , and

secondly by evaluating
dx

dt
(0),

dy

dt
(0),
∂T

∂x
(0, 2) and

∂T

∂y
(0, 2), and applying the Chain

Rule.

EXAMPLE 2 Define g(t) = f (t2 + 3, et). If ∇ f (3, 1) = (−2, 5), find g′(0). What condition on f will
guarantee the validity of your work?

Solution: First, observe that f is a function of two variables. Say f = f (u, v). Thus,
we have g(t) = f (u(t), v(t)) where u(t) = t2 + 3 and v(t) = et.

Next, to apply the Chain Rule, we require that f is differentiable.

Assuming this condition, we get

g′(t) = fx(u(t), v(t))u′(t) + fy(u(t), v(t))v′(t)

= fx(u(t), v(t))(2t) + fy(u(t), v(t))(et)

Taking t = 0 gives

g′(0) = fx(u(0), v(0))(2(0)) + fy(u(0), v(0))(e0)

= 0 + fy(3, 1)(1)

= 5

since ∇ f (3, 1) = (−2, 5).

EXERCISE 3 Define f (t) = g(1 + t2, 1 − t2). If ∇g(2, 0) = (3, 4), find f ′(1). What condition on g
will guarantee the validity of your work?












































































































62 Chapter 6 The Chain Rule

EXERCISE 4 A differentiable function f (x, y) is given, and g(t) is defined by

g(t) = f (x, y)

where x(t) = cos t and y(t) = sin t. Write out the Chain Rule for g′(t). Calculate

g′
(
π
3

)

, if ∇ f
(

1
2
,
√

3
2

)

=
(√

3, 4
)

.

The Vector Form of the Basic Chain Rule

We can use the dot product to rewrite the Chain Rule into a vector form. In particular,
if we have

T (t) = f (x(t), y(t))

where f (x, y), x(t), and y(t) are differentiable, then

dT

dt
=
∂ f

∂x

dx

dt
+
∂ f

∂y

dy

dt

=

(

∂ f

∂x
,
∂ f

∂y

)

·
(

dx

dt
,

dy

dt

)

= ∇ f ·
dx

dt

So, we have
d

dt
f (x(t)) = ∇ f (x(t)) ·

dx

dt
(t)

with x(t) = (x(t), y(t)).

In this vector form, the Chain Rule holds for any differentiable function f (x), x ∈ Rn,
e.g. T = f (x, y, z), representing temperature or some other quantity in 3-space.

EXAMPLE 3 Let the temperature at position (x, y, z) in the vicinity of the planet Mercury be given
by T = T (x, y, z) where T is differentiable. If the path of a spaceship is (x(t), y(t), z(t)),

then write the Chain Rule for
dT

dt
.

Solution: We have

dT

dt
= ∇T (x(t), y(t), z(t)) · (x′(t), y′(t), z′(t))

= Tx(x(t), y(t), z(t))x′(t) + Ty(x(t), y(t), z(t))y′(t) + Tz(x(t), y(t), z(t))z′(t)

EXERCISE 5 A differentiable function f (x, y, z) is given and g(t) is defined by

g(t) = f (x, y, z)

where x(t) = t, y(t) = t2, and z(t) = t3. Write out the Chain Rule for g′(t). Find g′(1)

if ∇ f (1, 1, 1) =
(

2, 1
2
, 1

)

.












































































































Section 6.2 Extensions of the Basic Chain Rule 63

6.2 Extensions of the Basic Chain Rule

So far, we have considered composite functions formed from differentiable functions

u = f (x, y), with x = x(t), y = y(t)

In this situation, the different variables are referred to as follows:

u : dependent variable

x, y : intermediate variables

t : independent variable

u

!!

x
""

y

t t

The tree diagram illustrates the “chain of dependence”. Observe, that our chain rule
above makes sense from the point of view of rate of change. From the dependence
diagram, we clearly see that the values of u are dependent on x and y which are each
dependent on t. Thus, the rate of change of u should be the sum of the rate of change

with respect to its x-component and with respect to its y-component. The term
∂u

∂x

dx

dt
calculates the rate of change of u with respect to those t’s that affect u through x.

Similarly
∂u

∂y

dy

dt
calculates the rate of change of u with respect to those t’s that affect

u through y.

We now discuss the case where there is more than one independent variable.

Assume x = x(s, t) and y = y(s, t) have first order partial derivatives at (s, t) and let

u = f (x, y)

where f is differentiable at (x, y) = (x(s, t), y(s, t)). Then u is a composite function of
two independent variables s and t.

Since u is a function of two variables, we want to write a chain rule for
∂u

∂s
and
∂u

∂t
.

We observe this is very similar to the case above. For
∂u

∂s
, the rate of change of u

with respect to those s’s that affect u through x is now
∂u

∂x

∂x

∂s
, since x is a function of

two variables. Continuing this we get

∂u

∂s
=
∂u

∂x

∂x

∂s
+
∂u

∂y

∂y

∂s

(6.11)

∂u

∂t
=
∂u

∂x

∂x

∂t
+
∂u

∂y

∂y

∂t

u

!!

x
""

y

## $$ ## $$
s t s t












































































































64 Chapter 6 The Chain Rule

EXERCISE 1 Show that this form of the Chain Rule could also be motivated using the linear ap-
proximation. Where is the condition that f (x, y) is differentiable used?

REMARKS

1. It is important to understand the difference between the various partial deriva-
tives in equations (6.11), and to know which variable is held constant. For
example

∂u

∂x
means : regard u as the given function of x and y, and

differentiate with respect to x, holding y fixed.

∂u

∂s
means : regard u as the composite function of s and t,

and differentiate with respect to s, holding t fixed.

2. Equations of the form x = x(s, t), y = y(s, t) can be thought of as defining a
change of coordinates in 2-space.

EXAMPLE 1 Let z = f (x, y), where x = r cos θ, and y = r sin θ. Assuming that f is differentiable,
verify that

(

∂z

∂r

)2

+
1

r2

(

∂z

∂θ

)2

=

(

∂ f

∂x

)2

+

(

∂ f

∂y

)2

Solution: From the Chain Rule we obtain

∂z

∂r
=
∂z

∂x

∂x

∂r
+
∂z

∂y

∂y

∂r
=
∂ f

∂x
cos θ +

∂ f

∂y
sin θ

∂z

∂θ
=
∂z

∂x

∂x

∂θ
+
∂z

∂y

∂y

∂θ
=
∂ f

∂x
(−r sin θ) +

∂ f

∂y
(r cos θ)

z

!!

x
""

y

## $$ ## $$
r θ r θ

Thus, we get
(

∂z

∂r

)2

+
1

r2

(

∂z

∂θ

)2

=

(

∂ f

∂x
cos θ +

∂ f

∂y
sin θ

)2

+
1

r2

(

∂ f

∂x
(−r sin θ) +

∂ f

∂y
(r cos θ)

)2

=

(

∂ f

∂x

)2

cos2 θ +

(

∂ f

∂y

)2

sin2 θ +

(

∂ f

∂x

)2

sin2 θ +

(

∂ f

∂y

)2

cos2 θ

=

(

∂ f

∂x

)2

(cos2 θ + sin2 θ) +

(

∂ f

∂y

)2

(cos2 θ + sin2 θ)

=

(

∂ f

∂x

)2

+

(

∂ f

∂y

)2

as required.












































































































Section 6.2 Extensions of the Basic Chain Rule 65

REMARK

In some situations (see the example to follow) it is necessary to write a more precise
form of the Chain Rule (6.11), one which displays the functional dependence.

Let g denote the composite function of f (x, y) and x(s, t), y(s, t):

g(s, t) = f (x(s, t), y(s, t))

Then, the first equation in (6.11) can be written as

∂g

∂s
(s, t) =

∂ f

∂x
(x(s, t), y(s, t))

∂x

∂s
(s, t) +

∂ f

∂y
(x(s, t), y(s, t))

∂y

∂s
(s, t)

with a similar equation for
∂g

∂t
(s, t).

EXAMPLE 2 A differentiable function f is given with ∇ f (2, 0) = (2, 3). Calculate
∂g

∂x
(1, 1) where

g(x, y) = f (2xy, x2 − y2)

Solution: We see that f is a function of two variables. Say, f = f (u, v).

Thus, we have

z = g(x, y) = f (u(x, y), v(x, y))

where u(x, y) = 2xy and v(x, y) = x2 − y2.
The Chain Rule reads:

z

!!

u
""

v

## $$ ## $$
x y x y

∂g

∂x
(x, y) =

∂ f

∂u
(u(x, y), v(x, y))

∂u

∂x
(x, y) +

∂ f

∂v
(u(x, y), v(x, y))

∂v

∂x
(x, y)

= 2y
∂ f

∂u
(u(x, y), v(x, y)) + 2x

∂ f

∂v
(u(x, y), v(x, y))

Taking (x, y) = (1, 1), we obtain

∂g

∂x
(1, 1) = 2(1)

∂ f

∂u
(u(1, 1), v(1, 1)) + 2(1)

∂ f

∂v
(u(1, 1), v(1, 1))

= 2
∂ f

∂u
(2, 0) + 2

∂ f

∂v
(2, 0)

= 2(2) + 2(3) = 10












































































































66 Chapter 6 The Chain Rule

EXERCISE 2 Referring to Example 2, calculate
∂g

∂y
(1, 1).

EXERCISE 3 A function g is defined by

g(t) = f (h(t) + t, h(t) − t)

where f (x, y) and h(t) are both differentiable. Write the Chain Rule for g′(t).

EXERCISE 4 Referring to Exercise 3, if h(1) = 2, h′(1) = 3 and ∇ f (3, 1) = (2,−3), find g′(1).

In the dependence diagrams in Examples 1 and 2 we see there are two paths leading
from the dependent variable to the independent variable and this gives rise to a sum of
two terms on the right side of the equation. Each path has two links (–), which results
in each term being a product of two derivatives. Thus, we can use our dependence
diagrams to find the Chain Rule for more complicated situations. In particular, to
obtain the Chain Rule from a dependence diagram we have the following algorithm.

ALGORITHM

To write the Chain Rule from a dependence diagram we:

1. Take all possible paths from the differentiated variable to the differentiating
variable.

2. For each link (–) in a given path, differentiate the upper variable with respect
to the lower variable being careful to consider if this is a derivative or a partial
derivative. Multiply all such derivatives in that path.

3. Add the products from step 2 together to complete the Chain Rule.

EXAMPLE 3 The temperature T of the water in a pond depends on position and time. Thus, we
have temperature function T = T (x, y, t). Find the rate of change of temperature
experienced by a duck whose path is x = x(t), y = y(t) assuming that T (x, y, t), x(t),
and y(t) are all differentiable.












































































































Section 6.2 Extensions of the Basic Chain Rule 67

Solution: We have

T = T (x, y, t), where x = x(t), y = y(t)

We draw the dependence diagram and apply the algorithm above.

The first path gives
∂T

∂x

dx

dt
,

the second path gives
∂T

∂y

dy

dt
,

and the third path gives
∂T

∂t
.

T

!!

x
""

t

t t

y

Thus, the Chain Rule is the sum of these terms. So, we have

dT

dt
=
∂T

∂x

dx

dt
+
∂T

∂y

dy

dt
︸!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!︸

+
∂T

∂t

↑ ↑ ↑
Rate of change of tem-
perature with time, as ex-
perienced by duck

Contribution due
to duck’s move-
ment

Due to change of temper-
ature with time at a fixed
position

It is essential to distinguish between:

dT

dt
: the ordinary derivative of T as a composite function of t.

∂T

∂t
: the partial derivative of T as the given function of x, y, t with x, y held fixed.

In order to emphasize which variables are held fixed, one can write:

(

∂T

∂t

)

x,y

In order to avoid abuse of notation, i.e. using T to denote two different functions, one
can write

T (t) = f (x(t), y(t), t)

so that T (t) is the function which measures the temperature at that duck’s position at
time t and f (x, y, t) is the temperature of the water at position (x, y) at time t. Then,
the Chain Rule reads

dT

dt
(t) = fx

(

x(t), y(t), t
)

x′(t) + fy

(

x(t), y(t), t
)

y′(t) + ft

(

x(t), y(t), t
)

(6.12)

or more concisely
T ′(t) = fxx′ + fyy

′ + ft












































































































68 Chapter 6 The Chain Rule

EXERCISE 5 Show that the Chain Rule (6.12) can also be derived by means of the increment form
of the linear approximation for f (x, y, t).

EXAMPLE 4 A differentiable function f is given such that f (3, 2) = 5 and ∇ f (3, 2) = (4,−1). Let
g(t) = t2 f (2t + 1, 3t3 − t). Calculate g′(1).

Solution: We see that f is a function of two variables. Say, f = f (u, v). Thus, we
have

z = g(t) = t2 f (u(t), v(t))

where u(t) = 2t + 1 and v(t) = 3t3 − t.

Observe that the dependent variable z depends of the value of t and the value of
f (u, v). Hence, z is technically a function of three variables t, u, and v. Under compo-
sition, we get that both u and v are functions of t. Thus, we get the given dependency
diagram. Using the algorithm, we find that

The first path gives
∂z

∂u

du

dt
,

the second path gives
∂z

∂v

dv

dt
,

and the third path gives

(

∂z

∂t

)

u,v

.

z

!!

u
""

t

t t

v

The Chain Rule is the sum of these terms. So,

g′(t) =
∂z

∂u

du

dt
+
∂z

∂v

dv

dt
+

(

∂z

∂t

)

u,v

To calculate
∂z

∂u
, we are taking the partial derivative of z holding v and t as constants.

Thus, we get
∂z

∂u
= t2 fu(u, v)

Similarly,
∂z

∂v
= t2 fv(u, v)

As indicated by the notation, to calculate

(

∂z

∂t

)

u,v

we take the partial derivative of z

holding u and v as constants. Since both u and v are considered constant, it means
that f (u, v) is constant. Hence, we get

(

∂z

∂t

)

u,v

= 2t f (u, v)

Thus, we have that

g′(t) = t2 fu(u, v)(2) + t2 fv(u, v)(9t2 − 1) + 2t f (u, v)












































































































Section 6.3 The Chain Rule for Second Partial Derivatives 69

Hence,

g′(1) = (1)2 fu(3, 2)(2) + (1)2 fv(3, 2)(9(1)2 − 1) + 2(1) f (3, 2)

= 4(2) + (−1)(8) + 2(5) = 10

EXERCISE 6 Let f be a function of two variables such that f (2, 0) = −1 and ∇ f (2, 0) = (2, 3). Let

g(x, y) = x f (2xy, x2− y2). Calculate
∂g

∂x
(1, 1). What assumption do you need to make

about f ?

EXERCISE 7 Let u(s, t) = f (x(s, t), y(s, t), s, t). Write the Chain Rule for
∂u

∂s
, showing the func-

tional dependence explicitly.

6.3 The Chain Rule for Second Partial Derivatives

In some situations, it is necessary to be able to calculate second derivatives of com-
posite functions using the Chain Rule. One encounters this problem when working
with partial differential equations which involve second derivatives e.g. Laplace’s
equation

uxx + uyy = 0

It also arises when working with Taylor Polynomials and in the proof of Taylor’s
Theorem (see Chapter 8).

Let’s start with an example using functions of one variable.

EXAMPLE 1 If z = f (x) where f is twice differentiable and x = eu, verify that

z′′(u) = x2 f ′′(x) + x f ′(x)

Solution: Observe that by composition we have z = z(u). Since f (x) and x(u) are
differentiable the Chain Rule gives

z′(u) = f ′(x)x′(u) = f ′(x)eu

Since z′(u) is differentiable, we can apply the Chain Rule again to calculate z′′(u).
Drawing the dependence diagram for z′(u) and using our algorithm for calculating
the Chain Rule we get

z′′(u) =
∂z′(u)

∂x

dx

du
+

(

∂z′(u)

∂u

)

x

Then, we have

∂z′(u)

∂x
=
∂ f ′(x)eu

∂x
= f ′′(x)eu

z′

!!

x
""

u

u












































































































70 Chapter 6 The Chain Rule

since we are holding u constant and taking the derivative with respect to x, and

(

∂z′(u)

∂u

)

x

=

(

∂ f ′(x)eu

∂u

)

x

= f ′(x)eu

since we are holding x constant and taking the derivative with respect to u. Finally,
dx

du
= eu and so we get

z′′(u) = ( f ′′(x)eu)(eu) + f ′(x)eu = x2 f ′′(x) + x f ′(x) (6.13)

REMARK

Observe, if we had substituted in x = eu at the beginning, we would get

z′(u) = f ′(eu)eu

Hence, taking the derivative with respect to u we would get

z′′(u) =
d

du

(

f ′(eu)
)

eu + f ′(eu)
d

du

(

eu) by the Product Rule

=

(

f ′′(eu)
d

du

(

eu)
)

eu + f ′(eu)eu by the Chain Rule

=
(

f ′′(eu)eu)eu + f ′(eu)eu

which matches (6.13). Thus, we see that our dependence diagram algorithm not only
calculates the necessary Chain Rules, but also includes the necessary Product Rules.

EXAMPLE 2 Let z = f (x, y) with x = r cos θ and y = r sin θ. Verify that

∂2z

∂r2
+

1

r

∂z

∂r
+

1

r2

∂2z

∂θ2
=
∂2 f

∂x2
+
∂2 f

∂y2

What assumptions do you need to make about f ?

Solution: Assuming that f is differentiable the Chain
Rule gives

∂z

∂r
=
∂z

∂x

∂x

∂r
+
∂z

∂y

∂y

∂r
=
∂ f

∂x
cos θ +

∂ f

∂y
sin θ (6.14)

z

!!

x
""

y

## $$ ## $$
r θ r θ

In order to calculate
∂2z

∂r2
, we have to use the Chain Rule to differentiate this equation

with respect to r, keeping θ constant.












































































































Section 6.3 The Chain Rule for Second Partial Derivatives 71

To draw the dependence diagram, we first write (6.14) more precisely showing the
functional dependence. It is

zr(r, θ) = fx(x, y) cos θ + fy(x, y) sin θ

So, we see that zr is dependent on x, y and θ where,
by composition, x and y are both dependent on r and
θ. Thus, we get the dependence diagram to the right.

zr

%%% &&&
θx

## $$
r θ

y

## $$
r θ

Since we will be taking partial derivatives of fx and fy, to apply the Chain Rule, we
now need to assume that fx and fy are differentiable. We get

∂2z

∂r2
=
∂zr

∂x

∂x

∂r
+
∂zr

∂y

∂y

∂r
(6.15)

Then,

∂zr

∂x
=
∂
(

fx cos θ + fy sin θ
)

∂x

=
∂ fx

∂x
cos θ +

∂ fy

∂x
sin θ since we are holding θ constant

= fxx cos θ + fyx sin θ

Since we assumed that fx and fy are differentiable, we find that

∂zr

∂y
= fxy cos θ + fyy sin θ

Putting these into (6.15) and computing
∂x

∂r
and
∂y

∂r
we find that

∂2z

∂r2
=

(

fxx cos θ + fyx sin θ
)

cos θ +
(

fxy cos θ + fyy sin θ
)

sin θ

= fxx cos2 θ + fyx sin θ cos θ + fxy cos θ sin θ + fyy sin2 θ (6.16)

We now repeat this process to find zθθ. We have

zθ(r, θ) = fx(x, y)xθ(r, θ) + fy(x, y)yθ(r, θ)

= fx(x, y)(−r sin θ) + fy(x, y)(r cos θ)

Thus, we get the dependence diagram to the right

zθ

%%% &&&
''''''

r θx

## $$
r θ

y

## $$
r θ

Assuming that fx and fy are differentiable the Chain Rule for zθθ becomes

∂2z

∂θ2
=
∂zθ
∂x

∂x

∂θ
+
∂zθ
∂y

∂y

∂θ
+

(

∂zθ
∂θ

)

x,y,r

(6.17)












































































































72 Chapter 6 The Chain Rule

We find that

∂zθ
∂x
=
∂
(

fx · (−r sin θ) + fy · (r cos θ)
)

∂x

=
∂ fx

∂x
· (−r sin θ) +

∂ fy

∂x
· (r cos θ) since r, θ are held constant

= − fxx · r sin θ + fyx · r cos θ

∂zθ
∂y
=
∂ fx

∂y
· (−r sin θ) +

∂ fy

∂y
· (r cos θ) since r, θ are held constant

= − fxy · r sin θ + fyy · r cos θ

∂zθ
∂θ
=
∂
(

fx · (−r sin θ) + fy · (r cos θ)
)

∂θ

= − fx · r
∂ sin θ

∂θ
+ fy · r

∂ cos θ

∂θ
since x, y, r are held constant

= − fx · r cos θ − fy · r sin θ

Putting these into (6.17) we get

fθθ =
(

− fxxr sin θ + fyxr cos θ
)

(−r sin θ) +
(

− fxyr sin θ + fyyr cos θ
)

(r cos θ)

+
(

− fxr cos θ − fyr sin θ
)

= fxxr
2 sin2 θ − fyxr

2 cos θ sin θ − fxyr
2 sin θ cos θ + fyyr

2 cos2 θ

+
(

− fxr cos θ − fyr sin θ
)

(6.18)

Using (6.14), (6.16) and (6.18) we get

∂2z

∂r2
+

1

r

∂z

∂r
+

1

r2

∂2z

∂θ2
=

(

fxx cos2 θ + fyx sin θ cos θ + fxy cos θ sin θ + fyy sin2 θ
)

+
1

r

(

fx cos θ + fy sin θ
)

+
1

r2

(

fxxr
2 sin2 θ − fyxr

2 cos θ sin θ

− fxyr
2 sin θ cos θ + fyyr

2 cos2 θ + − fxr cos θ − fyr sin θ
)

= fxx(cos2 θ + sin2 θ) + fyy(sin2 θ + cos2 θ)

= fxx + fyy

as required.

EXERCISE 1 Let g(u, v) be a function, and let f be defined by

f (x) = g(x, 2x)

Verify that
f ′′(x) = guu + 4guv + 4gvv

What assumption on g will ensure that your calculation is valid?












































































































Chapter 6 Problem Set 73

EXERCISE 2 A function g(t) is given, and f is defined by

f (x, y) = g(xy)

Verify that
x2 fxx = y2 fyy

What assumption on g will ensure that your calculation is valid?

EXERCISE 3 Let f (x, y) ∈ C2 and define g by

g(s) = f (a + hs, b + ks)

where (a, b) and (h, k) are regarded as fixed. Verify that

g′(s) = fx(a + hs, b + ks)h + fy(a + hs, b + ks)k

g′′(s) = fxx(a + hs, b + ks)h2 + 2 fxy(a + hs, b + ks)hk + fyy(a + hs, b + ks)k2

Chapter 6 Problem Set

1. Let w = x2y + xy3, x = 3t + 5, y = 2t2 − 10. Use the

Chain Rule to calculate
dw

dt
when t = −2.

2. (a) State the Chain Rule for a composite function
g(t) = f (x(t), y(t)), clearly indicating the hy-
potheses and the conclusion.

(b) Given a function of two variables f , let the
single-variable function g be defined by

g(t) = f (et cos t, et sin t)

If ∇ f (1, 0) = (8,−4), find g′(0). What hypothe-
ses must f satisfy?

3. Suppose that f (x, y, z) is given, and that

g(t) = f (t, t2, t3)

If ∇ f (1, 1, 1) = (5,−3,−4), find g′(1). What hypothe-
sis must f satisfy?

4. Suppose that f (x, y) is given, and that g is defined by

g(s, t) = f (st, s2 − t2)

If ∇ f (2,−3) = (4, 3), find ∇g(1, 2). What hypothesis
must f satisfy?

5. Write the Chain Rule for the indicated derivatives of
the composite functions, assuming that the various
functions are differentiable:

(a) If w = f (x, y, z), and x = x(s, t), y = y(s, t),

z = z(s, t), find
∂w

∂t
.

(b) If z = f (x, y), and y = g(x), find
dz

dx
.

(c) If z = f (x, y), and y = g(x), x = h(u, v), find
∂z

∂u
.

(d) If w = f (x, y, z), and y = g(x, z), z = h(x), find
dw

dx
.

(e) If w = F(p, q, r, s), and r = f (p, q), s = g(p, q),

find

(

∂w

∂p

)

q=const

.

6. For some constant θ define

u(x, y) = f (x cos θ + y sin θ,−x sin θ + y cos θ)

Express uxx+uyy, uxx−uyy and uxy in terms of the second
partial derivatives of f . Use double angle trigonomet-
ric identities to simplify.












































































































74 Chapter 6 The Chain Rule

7. In the following questions, state the assumption that
you make about f .

(a) If F(x, y) = y f (x2 − y2), show that

y
∂F(x, y)

∂x
+ x
∂F(x, y)

∂y
=

x

y
F(x, y)

(b) If u = x3 f
(

y

x
,

z

x

)

, show that

x
∂u

∂x
+ y
∂u

∂y
+ z
∂u

∂z
= 3u

(c) If F(x, y, z) = f

(

y − z

x
,

z − x

y
,

x − y

z

)

, show that

x
∂F

∂x
+ y
∂F

∂y
+ z
∂F

∂z
= 0.

8. Assume that f (x, y) has continuous second partial
derivatives. Let x = r cos θ and y = r sin θ. Show
that

∂2 f

∂r2
+

1

r

∂ f

∂r
+

1

r2

∂2 f

∂θ2
=
∂2 f

∂x2
+
∂2 f

∂y2

9. Recall for a simple electrical circuit that Ohm’s Law
states that V = IR where V is the voltage, I is
the current and R is the resistance. Find the rate of
change of the current when R = 400 Ω, I = 0.08 A,
dV/dt = −0.01 V/s, and dR/dt = 0.03 Ω/s. What is the
significance of the sign of your answer?

10. The path of a spacecraft is given by (x, y, z) =
(e2t cos t, e2t sin t, 2t + 1) where t denotes time. The
temperature at position (x, y, z) is given by a func-
tion u(x, y, z), and the temperature gradient at (1,0,1)

is ∇u(1, 0, 1) =
(

1
5
,− 1

3
,− 1

4

)

.

(a) Find the velocity of the spacecraft at time t.

(b) Find the rate of change of temperature experi-
enced by the spacecraft at time t = 0.

11. A proctologist is walking around the exam room. His
position is given by (x(t), y(t)) = (cos t, sin t). At
position (x, y) his cellphone gets a signal strength of
F(x, y) = exy2. Using the Chain Rule, find the rate of
change of the signal strength with respect to time at
t = π/2.

12. A particle travels along the path (x, y) = (t2− t, e3t) in a
plane where the temperature at position (x, y) and time
t is given by T (x, y, t) = 2x2y sin t. Calculate the rate
of change of temperature along the particle’s path with
respect to time at any time t.

13. Show that if f and g are twice differentiable functions,
then u(x, t) = f (x − at) + g(x + at) is a solution of the
wave equation: utt = a2uxx.

14. Let f be a function of two variables and define
g(x, y) = f (sin y, cos x). Find gxx and gyy. State any
assumptions you needed to make.

15. Let g(u, v) = f (u2 − v2, 2uv). Express (gu)2 + (gv)2 and
guu + gvv in terms of the partial derivatives of f . What
hypothesis must f satisfy?

16. If u = f (x + g(y)), where f and g have a continuous
second derivative, show that uxuxy = uyuxx.

17. A function g(u) with continuous second derivative is

given, and f is defined by f (x, y) = g

(

x

y

)

, for y ! 0.

Calculate
∂2 f

∂x∂y
and

∂2 f

∂y∂x
and verify that they are

equal.

18. Let f (x, y) = (xy)1/3, p(t) = t, q(t) = t2,
and consider the composite function H defined by
H(t) = f (p(t), q(t)). Show that the Chain Rule for H(t)
is not satisfied at t = 0. What conclusion can you draw
about f at (0, 0)?

19. Let f (x, y, z) and g(x, y, z) have continuous partial
derivatives. Prove that

∇( f g) = f∇g + g∇ f

20. (a) Let F(t) = f (a+th, b+tk), where the two-variable
function f has continuous second partial deriva-
tives, and a, b, h, k are constants. Show that

F′′(t) = h2 f11 + 2hk f12 + k2 f22,

where f11, f12 and f22 are evaluated at (a+ th, b+
tk).

(b) Can you generalize (a) to give a formula for
F′′′(t)?

21. Functions f (x, y, z) which satisfy Laplace’s equation
fxx + fyy + fzz = 0 are of interest in theoretical physics.

(a) Suppose that the single-variable function g has
a continuous second derivative, and f (x, y, z) =
g
(

1
r

)

, where r =
√

x2 + y2 + z2 > 0. Show that

fxx + fyy + fzz =
1

r4
g′′

(

1

r

)

, for r > 0

(b) Give a function f , other than a linear function,
which satisfies Laplace’s equation.

22. * Let the three-variable function f be differentiable and
satisfy f (tx) = tp f (x), for all x ∈ R3 and t ∈ R, where
p is constant. Prove that

x · ∇ f (x) = p f (x) for all x ∈ R3
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Chapter 7

Directional Derivatives and the

Gradient Vector

In this chapter, we introduce the concept of the directional derivative of a function.
This leads to a geometrical interpretation of the gradient vector.

7.1 Directional Derivatives

Motivation

Let z = f (x, y) represent the height of a mountain.
The level curves f (x, y) = C represent the contour
lines. Suppose that a skier is at the point P(a, b). In
what direction should he move in order to lose height
as rapidly as possible?

In order to answer such a question, we have to generalize the idea of the partial
derivative. One can think of fx as the rate of change of f in the x-direction and fy as
the rate of change of f in the y-direction. Our aim is to define a derivative which gives
the rate of change of a function f in a direction specified by a unit vector û = (u1, u2)
(i.e. ‖û‖ = 1) from a given point (a, b).

If L is the line through (a, b) in the direction û, then L has vector equation

(x, y) = (a, b) + sû = (a + su1, b + su2), for s ∈ R

At points on the line L, f (x, y) has value f (a+ su1, b+ su2), and this defines a function
of one variable s. Thus, the rate of change of f at (a, b) in the direction of û is just
the derivative of this function with respect to s evaluated at s = 0. Hence, we make
the following definition.
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76 Chapter 7 Directional Derivatives and the Gradient Vector

DEFINITION

Directional
Derivative

The directional derivative of f (x, y) at a point (a, b) in the direction of a unit vector
û = (u1, u2) is defined by

Dû f (a, b) =
d

ds
f (a + su1, b + su2)

∣
∣
∣
∣
∣
s=0

provided the derivative exists.

REMARK

Letting g(s) = f (a + su1, b + su2), we see that we can re-write the definition of
Dû f (a, b) as

Dû f (a, b) = g′(0)

By appealing to the definition of the single-variable derivative, we obtain the follow-
ing alternative expression for the directional derivative:

Dû f (a, b) = lim
h→0

g(0 + h) − g(0)

h

= lim
h→0

f (a + hu1, b + hu2) − f (a, b)

h

EXAMPLE 1 Find the directional derivative of f (x, y) = x2 − y2 at the point (1, 2) in the direction

of the vector (u =
(

1√
5
, 2√

5

)

.

Solution: By definition, we get

Dû f (1, 2) =
d

ds
f

(

1 +
1
√

5
s, 2 +

2
√

5
s

) ∣
∣
∣
∣
∣
s=0

=
d

ds





(

1 +
1
√

5
s

)2

−
(

2 +
2
√

5
s

)2


∣
∣
∣
∣
∣
s=0

=

[

2
√

5

(

1 +
1
√

5
s

)

−
4
√

5

(

2 +
2
√

5
s

)] ∣
∣
∣
∣
∣
s=0

= −
6
√

5

The directional derivatives in the directions of û = î = (1, 0) and û = ĵ = (0, 1) are
familiar objects.

THEOREM 1
(1) Dî f = fx

(2) Dĵ f = fy












































































































Section 7.1 Directional Derivatives 77

Proof: By the remark following the definition of the directional derivative, we find
that if û = î = (1, 0) then

Dî f (a, b) = lim
h→0

f (a + h, b) − f (a, b)

h

The right-side is precisely fx(a, b). The computation with û = ĵ is similar. !

We now derive a simple formula for calculating the directional derivative of a differ-
entiable function in terms of the partial derivatives.

THEOREM 2 If f (x, y) is differentiable at (a, b) and û = (u1, u2) is a unit vector, then

Dû f (a, b) = ∇ f (a, b) · û

Proof: Since f is differentiable at (a, b) we can apply the Chain Rule to get

Dû f (a, b) =
d

ds
f (a + su1, b + su2)

∣
∣
∣
∣
∣
s=0

=

[

D1 f (a + su1, b + su2)
d

ds
(a + su1)

+ D2 f (a + su1, b + su2)
d

ds
(b + su2)

]
∣
∣
∣
∣
∣
∣
s=0

=
[

D1 f (a + su1, b + su2)u1 + D2 f (a + su1, b + su2)u2

]

∣
∣
∣
∣
∣
s=0

=D1 f (a, b)u1 + D2 f (a, b)u2

=∇ f (a, b) · (u1, u2)

!

EXAMPLE 2 Find the directional derivative of f (x, y) = 2x3 + 4xy2 + y at the point (−1, 1) in the
direction of the vector (u = (1, 1).

Solution: Observe that the vector is not a unit vector, so we must normalize it. We
get

û =
(1, 1)

‖(1, 1)‖
=

(

1
√

2
,

1
√

2

)

We have

∇ f (x, y) = (6x2 + 4y2, 8xy + 1), so ∇ f (−1, 1) = (10,−7)

Since f has continuous partial derivatives at (−1, 1), it is differentiable at (−1, 1).
Thus, we can apply Theorem 2 to get

Dû f (−1, 1) = (10,−7) ·
(

1
√

2
,

1
√

2

)

=
3
√

2












































































































78 Chapter 7 Directional Derivatives and the Gradient Vector

EXAMPLE 3 Find the directional derivative of f (x, y) = yexy at the point (2, 1) in the direction of
the vector (u = (−3, 4).

Solution: We normalize the vector to get

û =
(−3, 4)

‖(−3, 4)‖
=

(

−
3

5
,

4

5

)

We have

∇ f (x, y) = (y2exy, exy + xyexy), so ∇ f (2, 1) = (e2, 3e2)

Since f has continuous partial derivatives at (2, 1), it is differentiable at (2, 1). Thus,
we can apply Theorem 2 to get

Dû f (2, 1) = (e2, 3e2) ·
(

−
3

5
,

4

5

)

=
9e2

5

REMARKS

1. Be careful to check the condition of Theorem 2 before applying it. If f is
not differentiable at (a, b), then we must apply the definition of the directional
derivative.

2. If we choose û = î = (1, 0) or û = ĵ = (0, 1), then we find that the directional
derivative is equal to the partial derivatives fx or fy respectively, just as we had
seen in Theorem 1.

The definition of the directional derivative and Theorem 2 can be extended to higher
dimensions in the expected way.

EXERCISE 1 Find the directional derivative of f defined by

f (x, y, z) = exyz

at the point (1,−1, 2) in the direction of the vector (u = (1, 2,−2).

When the directional derivative is applied, (x, y) usually represents position, and
f (x, y) represents some physical quantity, e.g. temperature, or height above sea level.
Because the parameter s in the definition represents distance along the line L, the
directional derivative represents a rate of change with respect to distance.

For example, if f (x, y) gives the temperature at position (x, y), then Dû f (a, b) equals
the rate of change of temperature, with respect to distance, at position (a, b) in the
direction û, and has dimensions of temperature per unit length.












































































































Section 7.2 The Gradient Vector in Two Dimensions 79

If z = f (x, y) represents height above sea level,
then Dû f (a, b) equals the rate of change of height
z with respect to horizontal distance, at position
(a, b) in the direction û. Geometrically, it equals
the slope of the tangent to the cross-section C at
the point A. (The vertical plane P cuts the surface
z = f (x, y) along the curve C.)

x
y

z

(a, b)

A

C

u

P

z = f (x, y)

7.2 The Gradient Vector in Two Dimensions

The Greatest Rate of Change

In general, for a function f (x, y), the directional derivative Dû f (a, b) has infinitely
many values corresponding to all possible directions û at (a, b). It is natural to ask:

“In which direction û does Dû f (a, b) assume its largest value?”

This is easily answered using Theorem 7.1.2 and the following property of the dot
product:

(u · (v = ‖(u‖ ‖(v‖ cos θ

where θ is the angle between (u and (v.

THEOREM 1 If f (x, y) is differentiable at (a, b) and ∇ f (a, b) ! (0, 0), then the largest value of
Dû f (a, b) is ‖∇ f (a, b)‖, and occurs when û is in the direction of ∇ f (a, b).

Proof: Since f is differentiable at (a, b) and ‖û‖ = 1 we have

Dû f (a, b) = ∇ f (a, b) · û
= ‖∇ f (a, b)‖ ‖û‖ cos θ

= ‖∇ f (a, b)‖ cos θ

where θ is the angle between û and ∇ f (a, b). Thus, Dû f (a, b) assumes its largest
value when cos θ = 1 i.e. θ = 0. Consequently, the largest value of Dû f (a, b) is
‖∇ f (a, b)‖ and occurs when û is in the direction of ∇ f (a, b). !












































































































80 Chapter 7 Directional Derivatives and the Gradient Vector

EXAMPLE 1 Find the largest rate of change of f (x, y) =
√

x2 + 2y2 at the point (1, 2), and the
direction in which it occurs.

Solution: We have ∇ f (x, y) =





x
√

x2 + 2y2
,

2y
√

x2 + y2




. Thus, by Theorem 1, the

largest rate of change of f at (1, 2) is

‖∇ f (1, 2)‖ =

∥
∥
∥
∥
∥
∥

(

1

3
,

4

3

)∥
∥
∥
∥
∥
∥
=

√
17

3

It occurs in the direction

(u = ∇ f (1, 2) =

(

1

3
,

4

3

)

EXAMPLE 2 Let z = f (x, y) = 3 − x2 + y2 represent the height above sea level. A hiker is at
position (1, 2, 6). In what direction should he start to move in order to follow a path
of steepest ascent? What would be the slope of his path (i.e. rate of change of height
with respect to horizontal distance)?

Solution: The gradient of f is

∇ f (x, y) = (−2x, 2y)

and at the given point

∇ f (1, 2) = (−2, 4)

By Theorem 1, the hiker should move in the direc-
tion (u = (−2, 4) in order to follow a path of steepest
ascent (i.e. largest rate of change of f ). The slope
of his path would be

x

y

(1, 2)

∇z(1, 2)

C = 3

‖∇ f (1, 2)‖ =
√

(−2)2 + (4)2 = 2
√

5

EXERCISE 1 Find the largest rate of change of f (x, y) = ln(x + y2) at the point (0, 1), and the
direction in which it occurs.

EXERCISE 2 Give a non-constant function f (x, y) and a point (a, b) such that the directional deriva-
tive at (a, b) is independent of the direction. What can you say about the tangent plane
of the surface z = f (x, y) at the point (a, b)?

Theorem 1 also applies in any dimension. That is, if f (x), x ∈ Rn, is differentiable
at a and û ∈ Rn is a unit vector, then the largest value of Dû f (a) is ‖∇ f (a)‖, and it
occurs when û is in the direction of ∇ f (a).












































































































Section 7.2 The Gradient Vector in Two Dimensions 81

EXAMPLE 3 Let f (x, y, z) = z3ex2+y2−2x. Determine the greatest rate of change of f at (1, 1, 1) and
the direction in which it occurs.

Solution: We have

∇ f =
(

(2x − 2)z3ex2+y2−2x, 2yz3ex2+y2−2x, 3z2ex2+y2−2x)

Thus, the greatest rate of change of f at (1, 1, 1) is

‖∇ f (1, 1, 1)‖ = ‖(0, 2, 3)‖ =
√

0 + 4 + 9 =
√

13

and occurs in the direction of

(u = ∇ f (1, 1, 1) = (0, 2, 3)

The Gradient and the Level Curves of f

People who have experience reading contour maps know that the direction of steepest
ascent is orthogonal to the contour lines. In mathematical terms, this means that the
direction of greatest rate of change of f , which we have shown is the direction of
the gradient of f , is orthogonal to the level curves of f . We can see this result
geometrically in Example 2. Indeed, as we move along a level curve, the value of f
doesn’t change, so its rate of change in this direction is zero. Therefore, if û is a unit
vector pointing in the direction of the level curve at (a, b), we have Dû f (a, b) = 0 and
consequently ∇ f (a, b) · û = 0. That is, ∇ f is orthogonal to the direction of the level
curve.

We now derive this result analytically.

THEOREM 2 If f (x, y) ∈ C1 in a neighborhood of (a, b) and ∇ f (a, b) ! (0, 0), then ∇ f (a, b) is
orthogonal to the level curve f (x, y) = k through (a, b).

Proof: Since ∇ f (a, b) ! (0, 0), by the Implicit Function Theorem (see Appendix A)
the level curve f (x, y) = k can be described by parametric equations x = x(t), y = y(t)
for t ∈ I where x(t) and y(t) differentiable. Hence, the level curve may be written as
f (x(t), y(t)) = k, t ∈ I. Suppose

a = x(t0), b = y(t0) for some t0 ∈ I

Since f is differentiable, we can take the derivative of
this equation with respect to t using the Chain Rule to
get

fx(x(t), y(t))x′(t) + fy(x(t), y(t))y′(t) = 0

(a, b)

∇ f (a, b)

(

x′(t0), y′(t0)
)

f (x, y) = k
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82 Chapter 7 Directional Derivatives and the Gradient Vector

On setting t = t0 we get

∇ f (a, b) · (x′(t0), y′(t0)) = 0

Thus, ∇ f (a, b) is orthogonal to (x′(t0), y′(t0)) which is tangent to the level curve. !

EXERCISE 3 Prove that the level curves of the functions f and g defined by

f (x, y) =
y

x2
, x ! 0, g(x, y) = x2 + 2y2

intersect orthogonally. Illustrate graphically.

The Gradient Vector Field

Given a function f (x, y) that is differentiable at (x, y), the gradient of f at (x, y) is
defined by

∇ f (x, y) = ( fx(x, y), fy(x, y))

The gradient of f associates a vector with each point of the domain of f , and is
referred to as a vector field. It is represented graphically by drawing ∇ f (a, b) as a
vector emanating from the corresponding point (a, b).

Theorems 1 and 2 show that the gradient vector field has important geometric prop-
erties:

1) It gives the direction in which the function has its largest rate of change.

2) It gives the direction that is orthogonal to the level curves of the function.

C

(a, b1)

(a, b2)

(a, b3)

∇ f (a, b1)

∇ f (a, b2)

∇ f (a, b3)

f (x, y) = C1

f (x, y) = C2

f (x, y) = C3

If the level curves are contour lines, then a curve such as C, which intersects the level
curves orthogonally, would define a curve of steepest ascent on the surface.












































































































Section 7.3 The Gradient Vector in Three Dimensions 83

REMARK

Vector fields and gradient vector fields will be studied in detail in Calculus 4 (AMath
231).

7.3 The Gradient Vector in Three Dimensions

One cannot visualize the graph w = f (x, y, z) of a function f (x, y, z), because four
dimensions are required. One can gain insight into such a function, however, by
considering the level surfaces in R3 defined by

f (x, y, z) = k, where k ∈ R( f )

EXAMPLE 1 The level surfaces of the function f defined by

f (x, y, z) = x + 2y + 3z

are the parallel planes
x + 2y + 3z = k

EXAMPLE 2 The level surfaces of the function

f (x, y, z) = x2 + y2 − z2

given by
x2 + y2 − z2 = k

are hyperboloids with two sheets if k < 0, hyperboloids with one sheet if k > 0, and
a cone if k = 0.

x y

z
x2 + y2 − z2 = −22

x2 + y2 − z2 = −1

x2 + y2 − z2 = 0

x2 + y2 − z2 = 1

x2 + y2 − z2 = 22

x2 + y2 − z2 = 32

x y

z

x y

z

x y

z












































































































84 Chapter 7 Directional Derivatives and the Gradient Vector

We now discuss the interpretation of the gradient ∇ f (a, b, c), for f (x, y, z). As noted
in Section 7.2, Theorem 7.2.1 applies in this case. That is, ∇ f (a, b, c) gives the direc-
tion of the largest rate of change of f . We now generalize Theorem 7.2.2 to the case
f (x, y, z). As one might guess, we have:

THEOREM 1 If f (x, y, z) ∈ C1 in a neighborhood of (a, b, c) and ∇ f (a, b, c) ! (0, 0, 0), then
∇ f (a, b, c) is orthogonal to the level surface f (x, y, z) = k through (a, b, c).

The details are similar to the proof of Theorem 7.2.2.

Observe that Theorem 1 gives a quick way to find the equation of the tangent plane
of a surface in R3 given by

f (x, y, z) = k

If x ∈ R3 is an arbitrary point in the tangent plane
to the surface at the point a ∈ R3, then the vector
x − a lies in the tangent plane, and by Theorem 1, is
orthogonal to ∇ f (a), leading to

∇ f (a) · (x − a) = 0
x

y

z

a
x

∇ f (a)

f (x, y, z) = k

Since this equation is satisfied for all x in the tangent plane, it is the equation of the
tangent plane. In component form, we have

fx(a, b, c)(x − a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c) = 0

EXAMPLE 3 Find the equation of the tangent plane to the surface z3ex2+y2−2x = 1 at the point
(1, 1, 1).

Solution: From our work above, the equation of the tangent plane is

∇ f (1, 1, 1) · (x − 1, y − 1, z − 1) = 0

Using our work in Example 7.2.3, we get

(0, 2, 3) · (x − 1, y − 1, z − 1) = 0

2(y − 1) + 3(z − 1) = 0

EXERCISE 1 Find the equation of the tangent plane to the ellipsoid x2 + 2y2 + 3z2 = 12 at the point
(1, 1,

√
3).

Here is an important special case of the above set-up. Consider the level surface
f (x, y, z) = k for a function f (x, y, z) of the form f (x, y, z) = z − g(x, y) where g(x, y)












































































































Chapter 7 Problem Set 85

is a function of two variables. Suppose further that k = 0. That is, our level surface
is of the form

z − g(x, y) = 0

or more simply
z = g(x, y).

Let’s derive the equation of the tangent plane at (a, b, c) using the above formula.
Note first that if (a, b, c) is on the level surface, i.e. if f (a, b, c) = 0, then we must
have c = g(a, b).

Now, since f (x, y, z) = z − g(x, y), we find that fx = −gx, fy = −gy, and fz = 1.

Consequently, the equation for the tangent plane to the surface z = g(x, y) at the point
(a, b, f (a, b)) is given by

−gx(a, b)(x − a) − gy(a, b)(y − b) + z − g(a, b) = 0

which we can re-write as

z = g(a, b) + gx(a, b)(x − a) + gy(a, b)(y − b)

This is precisely the same expression we obtained in Chapter 5! The utility of this
new point of view is that it may be applied to obtain equations for tangent planes of
surfaces that are not defined by equations of the form z = g(x, y), where z is given
explicitly in terms of the variables x and y.

EXERCISE 2 Find the equation of the tangent plane to the surface

z =
xy

3x − 2y
at (1, 2,−2)

Hint: Rewrite the equation as z(3x − 2y) − xy = 0 and use the above approach.

EXERCISE 3 Find the equation of the tangent plane to the surface defined by x5y + y5z + z5x = −1
at the point (1,−1, 1).

Chapter 7 Problem Set

1. (a) Calculate the directional derivative of f at the
point (a, b) in the direction defined by (v:

(i) f (x, y) = ex cos y, (a, b) =
(

0, π
4

)

, and

(v = (1, 3).

(ii) f (x, y, z) = sin(xyz), (a, b, c) =
(

1, 1, π
4

)

, and

(v = (1,−
√

2, 1).

(b) In each case find the direction at (a, b) in which
the rate of change of f is greatest, and find this

maximum rate of change.

2. The temperature of a metal sheet as a function of posi-
tion (x, y) is given by T (x, y) = 100 + 10e−x sin y. Find
the rate of change of temperature at the point (0, π

4
) in

the direction of the vector (1, 1). Find the direction at
(0, π

4
) in which the rate of change is greatest, and find

this rate of change.

3. Calculate the directional derivative of g(x, y, z) = ln(x+

eyz) at (0, 1, 0) in the direction from the point (0, 1, 0)












































































































86 Chapter 7 Directional Derivatives and the Gradient Vector

to the point (2, 3,−1).

4. Let f (x, y) = ln(x+ 2y). Find the directional derivative
of f at (1,0) in the direction of the line y = 2x − 2.

5. Let f (x, y) = ln(x2 + y2).

(a) Find the directional derivative of f at (−1, 2) in
the direction of the vector (v = (3,−4).

(b) Find the direction in which f is increasing the
fastest at (1, 1). What is the magnitude of this
rate of change?

(c) Find the equation of the tangent line at (1, 1) to
the level curve f (x, y) = ln 2.

6. Let f (x, y) = 2xy − y2. Use the gradient vector to find
the equation of the tangent line of the curve f (x, y) = 3
at the point (2, 1). Sketch the curve and the tangent
line.

7. Let f (x, y, z) be a differentiable function such that
∇ f (a, b, c) ! (0, 0, 0). Consider the surface
f (x, y, z) = k and assume that f (a, b, c) = k. Write
down the equation of the tangent plane to the surface
at (a, b, c), in terms of the gradient vector.

8. Let f (x, y, z) = x2 + 2y2 − 3z2. Use the gradient vector
to find the equation of the tangent plane to the surface
f (x, y, z) = 3 at the point (2, 1, 1).

9. Let x2 − y2 + 3z2 = 0 implicitly define a surface. Find
the equation of the tangent plane to the surface at the
point (1, 2, 1).

10. Use the gradient vector to verify that the two families
of curves intersect each other orthogonally. Illustrate
graphically.

(a) xy = c and y2 − x2 = k

(b) (x − c)2 + y2 = c2 and x2 + (y − k)2 = k2.

11. A sphere centered at (2, 1,−1) passes through the point
P = (1,−1, 1). Find the equation of the tangent plane
to the sphere at P. Sketch the sphere and plane.

12. (a) Find the directional derivative of w = x2 + y2 in
the direction of the tangent vector to the spiral
(x, y) = (et cos t, 2et sin t), at the point defined by
t = 0.

(b) Find
dw

dt
along the spiral, at the same point.

(c) How are these rates of change related?

13. At a point (a, b) ∈ R2, the directional derivative of a
differentiable function f (x, y) in the directions (1, 1)
and (1,−1) equals 3 and 2 respectively. Find the largest
rate of change of f (x, y) at (a, b), and the direction in
which it occurs.

14. In what directions at the point (2,1) does the directional
derivative of the function f (x, y) = xy equal 0? Equal
√

5
2
? Express your answer by giving the angle between

the required directions and the gradient of f at (2,1).
Give a diagram, showing some typical level curves of
f near (2,1), and the required directions.

15. The temperature in a region of space is given by
T (x, y, z) = e−2x(1 + 2y)( 1

1+3z
). A fly moves along the

path (x, y, z) = (2t, sin t, et − 1).

(a) Find dT
dt

at t = 0.

(b) Observe that the direction of the fly’s path at t = 0
is (2, 1, 1). Find the directional derivative of T in
the direction of the fly’s path at t = 0.

(c) Explain the physical difference between a) and
b).

16. Suppose that another bug, starting at the origin, is
about to fly in the temperature field from the previous
question. This new bug always flies at a speed of 2
m/s (suppose that the spatial units are metres and the
temporal unit is seconds). In what direction(s) could
the bug fly initially to experience a rate of change of
temperature of 8 ◦C per second?

17. A space-ship cruising on the sunny side of the planet
Mercury starts to overheat. The space-ship is at loca-
tion (1,1,1) and the temperature of the ship’s hull when
at location (x, y, z) will be

T (x, y, z) = 200 + e−x2−2y2−3z2

where x, y, z are in metres.

(a) In what direction should the ship proceed in order
to decrease temperature most rapidly?

(b) If the ship travels at e8 m/sec, how fast will the
temperature decrease (in degrees/sec) if it pro-
ceeds in that direction?

(c) The metal of the hull will crack if cooled at a rate
greater than

√
14e2 degrees/sec. Describe the set

of possible directions in which the ship may pro-
ceed to bring the temperature down at that rate.
Give a sketch.

18. Let g(x, y, z) = xey + yz2. Use the gradient vector to
find the equation of the tangent plane to the surface
g(x, y, z) = 2 at the point (2, 0, 1).

19. Find all points on the paraboloid z = x2 + y2 − 1 at
which the normal line to the surface coincides with the
line joining the origin to the point. Illustrate your re-
sults with a sketch.

20. A cone, with vertex (0, 0,−2) and axis the z-axis, inter-
sects the plane z = 3 in a circle of radius

√
5.

(a) Show that the tangent plane to the cone at the
point (1,−2, 3) cuts the x-axis at the point (2,0,0).
Give a sketch.

(b) Write down a vector equation for the normal line
to the cone at (1,-2,3). Hence show that this line
intersects the xy-plane at the point (4,-8,0).
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Section 7.3 The Gradient Vector in Three Dimensions 87

21. (Chemotaxis) Chemotaxis is the chemically directed
movement of organisms up a concentration gradient.
The slime mold Dictyostelium discoideum exhibits this
phenomenon. In this case, single-celled amoeba of this
species move up the concentration gradient of a chem-
ical called cyclic AMP. Suppose the concentration of
cyclic AMP at the point (x, y) is given by

f (x, y) = 4
xy+1

(a) If you place an amoeba at the point (3,1) in
the xy-plane, determine in which direction the
amoeba will move if its movement is directed by
chemotaxis.

(b) It can be shown in general that a particle moving
in the manner described above has path y = y(x)
satisfying the differential equation (DE)

dy
dx
= fy/ fx

Find the path of the amoeba in a), which has ini-
tial condition y(3) = 1.

22. (a) Consider the sphere of radius 4 centered at the
origin, and the sphere of radius 3 centered at the
point (0,5,0). Prove that the normal directions to

these spheres at their points of intersection are or-
thogonal. Give a sketch.

(b) Generalize this result.

23. An engineer wishes to build a railroad up a moun-
tain that has the shape of an elliptic paraboloid
z = c − ax2 − by2, where a, b, c are positive constants.
At the point (1,1), in what directions may the track be
laid so that it will be climbing with a slope of 0.03
(i.e. a vertical rise of 0.03m for each horizontal metre)?
Make a sketch showing a few level curves, the gradi-
ent ∇z at (1,1), and the two possible directions for the
track. Work out the details using a =

√
3b, b = 0.015.

24. Compute the directional derivative D(u f (0, 0) in the di-
rection (u = (u1, u2) of

f (x, y) =







x|y|
√

x2 + y2
if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

25. Let f (x, y) be differentiable for all (x, y) ∈ R2. If
f (x, y) = f (y, x) for all (x, y), prove that the directional

derivative of f at (0, 0) in the direction
(

1√
2
,− 1√

2

)

is 0.
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Chapter 8

Taylor Polynomials and Taylor’s

Theorem

For a function of one variable f , the second derivative f ′′ plays an important role in
approximating f (x). Geometrically, f ′′ determines whether the graph of f is concave
up or concave down. Thus, if the graph of f is concave up near x ( f ′′(x) > 0), then
the linear approximation formula gives a value for f (x) which is too small. The
second derivative can in fact be used to estimate the error through Taylor’s formula.
In addition, f ′′ can be used to increase the accuracy of the linear approximation by
defining a quadratic approximation, the second degree Taylor polynomial.

In this chapter, we extend these ideas to functions of two variables.

8.1 The Taylor Polynomial of Degree 2

Review of the 1-D case

For a function of one variable, f (x), the Taylor polynomial of degree 2 at a is denoted
by P2,a(x), and is defined by

P2,a(x) = f (a) + f ′(a)(x − a) +
1

2
f ′′(a)(x − a)2

Observe that P2,a(x) is the sum of the linear approximation La(x) and a term which is
of second degree in (x − a). The coefficient of this term is determined by requiring
that the second derivative of P2,a(x) equals the second derivative of f at a:

P′′2,a(a) = f ′′(a)

You should verify this by differentiating P2,a(x).
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Section 8.1 The Taylor Polynomial of Degree 2 89

The 2-D case

Suppose that f (x, y) has continuous second partials at (a, b). The Taylor polynomial
of f of degree 2 at (a, b) is denoted P2,(a,b)(x, y) and is obtained by adding appropriate
2nd degree terms in (x−a) and (y−b) to the linear approximation L(a,b)(x, y). Consider

P2,(a,b)(x, y) = L(a,b)(x, y) + A(x − a)2 + B(x − a)(y − b) +C(y − b)2 (8.1)

where A, B,C are constants. Using (8.1) we can find that

∂2P2,(a,b)

∂x2
= 2A

since L(a,b)(x, y) does not contribute to the second derivatives as it is of first degree in
x and y.

Similarly, finding the other second partial derivatives of P2,(a,b)(x, y) gives

∂2P2,(a,b)

∂x∂y
= B

∂2P2,(a,b)

∂y2
= 2C

Requiring that the second partial derivatives of P2,(a,b) equal the second partial deriva-
tives of f at (a, b) leads to

2A =
∂2 f

∂x2
(a, b), B =

∂2 f

∂x∂y
(a, b), 2C =

∂2 f

∂y2
(a, b)

We then substitute these into equation (8.1) and write out the expression for L(a,b)(x, y),
to obtain the required formula.

DEFINITION

2nd degree Taylor
polynomial

The second degree Taylor polynomial P2,(a,b) of f (x, y) at (a, b) is given by

P2,(a,b)(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

+
1

2

[

fxx(a, b)(x − a)2 + 2 fxy(a, b)(x − a)(y − b) + fyy(a, b)(y − b)2
]

In general, it approximates f (x, y) for (x, y) sufficiently close to (a, b):

f (x, y) ≈ P2,(a,b)(x, y)

with better accuracy than the linear approximation.












































































































90 Chapter 8 Taylor Polynomials and Taylor’s Theorem

EXAMPLE 1 Use the Taylor polynomial of degree 2 to calculate
√

(0.95)3 + (1.98)3 approximately.

[This is a continuation of Example 4.4.1.]

Solution: Let f (x, y) =
√

x3 + y3 and (a, b) = (1, 2). By differentiating, one obtains

∇ f (1, 2) =

(

1

2
, 2

)

, H f (1, 2) =

[
11
12
− 1

3

− 1
3

2
3

]

Thus,

P2,(1,2)(x, y) = 3 +
1

2
(x − 1) + 2(y − 2) +

1

2

[

11

12
(x − 1)2 −

2

3
(x − 1)(y − 2) +

2

3
(y − 2)2

]

This polynomial approximates
√

x3 + y3 near the point (1, 2):

√

(0.95)3 + (1.98)3 ≈ P2,(1,2)(0.95, 1.98)

= 3 + (−0.065) +

(

0.0227

12

)

= 2.935946

The calculator value is 2.935944. Hence, the error is 0.000002 compared with
0.000943 for the linear approximation.

EXERCISE 1 (a) Find the Taylor polynomial P2,(a,b)(x, y) for

f (x, y) =
1

2
y2 + x −

1

3
x3

at the point (a, b) = (1, 0), by calculating the appropriate partial derivatives.

(b) Verify your results by letting u = x − 1, v = y and writing

f (x, y) =
1

2
v2 + u + 1 −

1

3
(u + 1)3

Expand and neglect powers higher than 2 and then convert back to x and y. This type
of algebraic derivation can only be done for a polynomial function.

We now ask: How large is the error if we use the approximation

f (x, y) ≈ P2,(a,b)(x, y)?

To answer this question, we need to extend Taylor’s Theorem to functions of two
variables f (x, y).












































































































Section 8.2 Taylor’s Formula with Second Degree Remainder 91

8.2 Taylor’s Formula with Second Degree Remainder

Review of the 1-D case

THEOREM 1 If f ′′(x) exists on [a, x], then there exists a number c between a and x such that

f (x) = f (a) + f ′(a)(x − a) + R1,a(x) (8.2)

where

R1,a(x) =
1

2
f ′′(c)(x − a)2 (8.3)

On recalling that
La(x) = f (a) + f ′(a)(x − a) (8.4)

we see that the term R1,a(x) represents the error in using the linear approximation.
Keep in mind that you can’t evaluate this expression, because you don’t know the
value of c. We only know that c lies between a and x. However, this formula is
useful because it gives a way of finding an upper bound for the error.

If f has a continuous second derivative on an interval [a−δ, a+δ] centered on a, then
f ′′ is bounded on this interval. That is, there exists a number B such that

| f ′′(x)| ≤ B, for all x ∈ [a − δ, a + δ]

By equations (8.2)-(8.4),

| f (x) − La(x)| =
∣
∣
∣R1,a(x)

∣
∣
∣

=

∣
∣
∣
∣
∣

1

2
f ′′(c)(x − a)2

∣
∣
∣
∣
∣

=
1

2
| f ′′(c)|(x − a)2

≤
1

2
B(x − a)2

for all x ∈ [a − δ, a + δ]. Knowing f ′′(x), you can find a value for B.

The 2-D Case

In order to generalize Taylor’s formula to the case of f (x, y), observe that R1,a(x) in
equation (8.3) has the same form as the second derivative term in P2,a(x), except that
f ′′ is evaluated at c instead of at a. Knowing the form of P2,(a,b)(x, y) leads us to
Taylor’s Theorem for a function of two variables.












































































































92 Chapter 8 Taylor Polynomials and Taylor’s Theorem

THEOREM 2 (Taylor’s Theorem)

If f (x, y) ∈ C2 in some neighborhood N(a, b) of (a, b), then for all (x, y) ∈ N(a, b)
there exists a point (c, d) on the line segment joining (a, b) and (x, y) such that

f (x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) + R1,(a,b)(x, y)

where

R1,(a,b)(x, y) =
1

2

[

fxx(c, d)(x − a)2 + 2 fxy(c, d)(x − a)(y − b) + fyy(c, d)(y − b)2
]

Proof: The idea is to reduce the given function f of two variables to a function g of
one variable, by considering only points on the line segment joining (a, b) and (x, y).

We parameterize the line segment L from (a, b) to (x, y) by

L(t) = (a + t(x − a), b + t(y − b)), 0 ≤ t ≤ 1

For simplicity write h = x − a and k = y − b. Then x − a = h, y − b = k, and Taylor’s
formula assumes the form

f (x, y) = f (a, b) + fx(a, b)h + fy(a, b)k + R1,(a,b)(x, y)

where

R1,(a,b)(x, y) =
1

2

[

fxx(c, d)h2 + 2 fxy(c, d)hk + fyy(c, d)k2
]

Define g by
g(t) = f (L(t)), 0 ≤ t ≤ 1 (8.5)

Since f has continuous second partials by hypothesis, we can apply the Chain Rule
to conclude that g′ and g′′ are continuous and are given by

g′(t) = fx(L(t))h + fy(L(t))k (8.6)

g′′(t) = fxx(L(t))h2 + 2 fxy(L(t))hk + fyy(L(t))k2 (8.7)

for 0 ≤ t ≤ 1.

Since g′′ is continuous on the interval [0, 1], Taylor’s formula may be applied to g
on this interval. That is, we can set x = 1 and a = 0 in equations (8.2) and (8.3). It
follows that there exists a number c̃, with 0 < c̃ < 1, such that

g(1) = g(0) + g′(0) +
1

2
g′′(c̃) (8.8)

Each term in this equation can be calculated using equations (8.5)-(8.7), giving

g(1) = f ((a, b) + [(x, y) − (a, b)]) = f (x, y)

g(0) = f (a, b), and

g′(0) = fx(a, b)h + fy(a, b)k

In addition, if we let (c, d) = L(c̃), then

1

2
g′′(c̃) = R1,(a,b)(x, y)

and equation (8.8) becomes precisely the modified version of Taylor’s formula. !
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REMARK

Like the one variable case, Taylor’s Theorem for f (x, y) is an existence theorem. That
is, it only tells us that the point (c, d) exists, but not how to find it.

Here is an example to show how Taylor’s formula can be used to estimate the error
when using the linear approximation formula.

EXAMPLE 1 If x ≥ 0 and y ≥ 0 show that

√

1 + x + 2y ≈ 1 +
1

2
x + y

with

|R1,(0,0)(x, y)| ≤
3

4
(x2 + y2)

Solution: By differentiating f (x, y) =
√

1 + x + 2y, we obtain

L(0,0)(x, y) = 1 + 1
2
x + y

and

fxx =
−1

4(1 + x + 2y)3/2
, fxy =

−1

2(1 + x + 2y)3/2
, fyy =

−1

(1 + x + 2y)3/2

For x ≥ 0 and y ≥ 0, f has continuous second partial derivatives so we can apply
Taylor’s Theorem to get that there exists a point (c, d) on the line segment from (x, y)
to (0, 0) such that

∣
∣
∣R1,(0,0)(x, y)

∣
∣
∣ =

∣
∣
∣
∣
∣

1

2

[

fxx(c, d)(x − 0)2 + 2 fxy(c, d)(x − 0)(y − 0) + fyy(c, d)(y − 0)2]
∣
∣
∣
∣
∣

Since we can not find (c, d), we want to find an upper bound for this function.
Applying the triangle inequality gives

∣
∣
∣R1,(0,0)(x, y)

∣
∣
∣ ≤

1

2

[∣
∣
∣ fxx(c, d)

∣
∣
∣ x2 + 2

∣
∣
∣ fxy(c, d)

∣
∣
∣ |x| |y| +

∣
∣
∣ fyy(c, d)

∣
∣
∣ y2

]

(8.9)

Thus, to find our upper bound for the error, we just need to find upper bounds for
| fxx(c, d)|, | fxy(c, d)|, and | fyy(c, d)|. Since (c, d) lies on the line segment from (x, y) to
(0, 0), and x ≥ 0 and y ≥ 0 we get that c ≥ 0 and d ≥ 0. Consequently, 1+ c+2d ≥ 1.
Therefore,

| fxx(c, d)| =
∣
∣
∣
∣
∣

−1

4(1 + c + 2d)3/2

∣
∣
∣
∣
∣
≤

1

4

| fxy(c, d)| =
∣
∣
∣
∣
∣

−1

2(1 + c + 2d)3/2

∣
∣
∣
∣
∣
≤

1

2

| fyy(c, d)| =
∣
∣
∣
∣
∣

−1

(1 + c + 2d)3/2

∣
∣
∣
∣
∣
≤ 1












































































































94 Chapter 8 Taylor Polynomials and Taylor’s Theorem

Substituting these into (8.9) we get

∣
∣
∣R1,(0,0)

∣
∣
∣ ≤

1

2

[
1

4
x2 + 2

1

2
|x| |y| + 1y2

]

≤
1

2

[
1

4
x2 +

1

2
(x2 + y2) + y2

]

, since 2|x||y| ≤ x2 + y2

=
3

8
x2 +

3

4
y2

Using the fact that
3

8
x2 ≤

3

4
x2 gives

∣
∣
∣
∣
∣
∣

√

1 + x + 2y −
(

1 +
1

2
x + y

)∣
∣
∣
∣
∣
∣
≤

3

4
(x2 + y2)

as required.

EXERCISE 1 Let f (x, y) = e−2x+y. Use Taylor’s Theorem to show that the error in the linear ap-
proximation L(1,1)(x, y) is at most 6e[(x − 1)2 + (y − 1)2] if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

REMARK

The most important thing about the error term R1,(a,b)(x, y) is not its explicit form, but
rather its dependence on the magnitude of the displacement
‖(x, y) − (a, b)‖. We state the result as a Corollary.

COROLLARY 3 If f (x, y) ∈ C2 in some closed neighborhood N(a, b) of (a, b), then there exists a
positive constant M such that

|R1,(a,b)(x, y)| ≤ M‖(x, y) − (a, b)‖2, for all (x, y) ∈ N(a, b)

8.3 Generalizations

In order to define the Taylor polynomial Pk,(a,b)(x, y) of degree k, in a concise manner,
we introduce the differential operator

(x − a)D1 + (y − b)D2

where D1 =
∂

∂x
and D2 =

∂

∂y
are the partial differential operators. Then, we formally

write

[(x − a)D1 + (y − b)D2]2 = (x − a)2D2
1 + 2(x − a)(y − b)D1D2 + (y − b)2D2

2












































































































Section 8.3 Generalizations 95

Note that D2
1 = D1D1. This means apply D1 twice, i.e. take the second partial

derivative with respect to the first variable.

In terms of this notation, the first degree Taylor polynomial P1,(a,b)(x, y) (which is the
linear approximation L(a,b)(x, y)) is written as

P1,(a,b)(x, y) = f (a, b) + [(x − a)D1 + (y − b)D2] f (a, b)

and the second degree Taylor polynomial is written as

P2,(a,b)(x, y) = P1,(a,b)(x, y) +
1

2!

[

(x − a)D1 + (y − b)D2

]2
f (a, b)

For k = 2, 3, . . . we recursively define the kth degree Taylor polynomial by

Pk,(a,b)(x, y) = Pk−1,(a,b)(x, y) +
1

k!

[

(x − a)D1 + (y − b)D2

]k
f (a, b)

The expression [(x − a)D1 + (y − b)D2]k is expanded using the Binomial Theorem.

EXERCISE 1 Write out P3,(a,b)(x, y) explicitly using subscript notation.

We now see that all of the results we had generalize in the expected way for all values
of k.

THEOREM 1 Taylor’s Theorem of order k
If f (x, y) ∈ Ck+1 at each point on the line segment joining (a, b) and (x, y), then there
exists a point (c, d) on the line segment between (a, b) and (x, y) such that

f (x, y) = Pk,(a,b)(x, y) + Rk,(a,b)(x, y)

where

Rk,(a,b)(x, y) =
1

(k + 1)!

[

(x − a)D1 + (y − b)D2

]k+1
f (c, d)

COROLLARY 2 If f (x, y) ∈ Ck+1 in some closed neighborhood N(a, b) of (a, b), then there exists a
constant M > 0 such that

| f (x, y) − Pk,(a,b)(x, y)| ≤ M ‖(x, y) − (a, b)‖k+1

for all (x, y) ∈ N(a, b).

COROLLARY 3 If f (x, y) ∈ Ck+1 in some neighborhood of (a, b), then

lim
(x,y)→(a,b)

| f (x, y) − Pk,(a,b)(x, y)|
‖(x, y) − (a, b)‖k

= 0












































































































96 Chapter 8 Taylor Polynomials and Taylor’s Theorem

The final stage in the process of generalization is to consider functions of n variables
f (x), x ∈ Rn. One has simply to replace the differential operator

[

(x − a)D1 + (y − b)D2

]

by
[(x1 − a1)D1 + · · · + (xn − an)Dn]

Letting ∇ = (D1, . . . ,Dn), we can be write this concisely in vector notation as

[

(x − a) · ∇
]

Chapter 8 Problem Set

1. Let f (x, y) = e3x−2y.

(a) Calculate the gradient vector and the Hessian ma-
trix of f at (a, b) = (2, 3).

(b) Write down the linearization L(2,3)(x, y) and the
Taylor polynomial P2,(2,3)(x, y) of f .

(c) Show that the gradient vector of f has the same
direction at each point. What conclusion can you
draw about the level curves of f ?

2. Find the Taylor polynomial P2,(a,b)(x, y) for each func-
tion.

(a) f (x, y) = ln(x + ey), (a, b) = (1, 0)

(b) f (x, y) = xex−y, (a, b) = (1, 1)

3. Let f (x, y) = (x− y) sin(x+ y). Find the Taylor polyno-
mial P2,(a,b)(x, y) of f at (π, π).

4. Use the second degree Taylor polynomial to derive the
approximation ln(sin2 x + cos2 y) ≈ x2 − y2 for (x, y)
sufficiently close to (0,0).

5. (a) Use the second degree Taylor polynomial to de-
rive the approximation (1+ x)y ≈ 1+ xy for (x, y)
sufficiently close to (0, 0).

(b) Test the accuracy of the approximation in (a) with
your calculator by making a table of values (3
cases). Give the percentage error in the approxi-
mations.

6. Consider the approximation

ln(x + 2y) ≈ (x − 3) + 2(y + 1)

for (x, y) sufficiently close to (3,−1). Prove that if
x ≥ 3 and y ≥ −1, the error satisfies

|error| ≤
7

2

[

(x − 3)2 + (y + 1)2
]

7. Find a function f (x, y) such that H f (x, y) =

[

1 2
2 −3

]

for all (x, y) ∈ R2, ∇ f (1, 0) = (−2, 5) and f (1, 0) = 7.
Is there more than one such f ?

8. Suppose that f (x, y) has continuous second partial
derivatives which satisfy | fxx| ≤ M, | fxy| ≤ M, | fyy| ≤

M for all (x, y) ∈ N = {(x, y) | (x − a)2 + (y − b)2 ≤ r2},
where M is a constant. Let L(a,b)(x, y) be the linear ap-
proximation of f at (a, b). Prove that

| f (x, y) − L(a,b)(x, y)| ≤ M[(x − a)2 + (y − b)2]

for all (x, y) ∈ N. This gives an upper bound for the
error in the linear approximation.

9. Let f (x, y) = ex−4y. Use Taylor’s Theorem to show
that the error in the linear approximation L(1,1)(x, y) is
at most e

2
[5(x − 1)2 + 20(y − 1)2] if 0 ≤ x ≤ 1 and

0 ≤ y ≤ 1.

10. Let f (x, y) = ln(1 + x + 2y). Use Taylor’s Theorem to
show that for x ≥ 0, y ≥ 0 we have

|R1,(0,0)(x, y)| ≤ 3(x2 + y2)

11. Let f (x, y) = 1
xy

for x > 0 and y > 0. Use Taylor’s
Theorem to show that if x > 1 and y > 1, then

| f (x, y) − L(1,1)(x, y)| ≤
3

2
[(x − 1)2 + (y − 1)2]

12. Consider a function f defined by f (x, y) = 2x2 + 3y2,
and let (a, b) ∈ R2 be arbitrary. Prove that
f (x, y) ≥ L(a,b)(x, y), for all (x, y) ∈ R2.
Comment: Since z = L(a,b)(x, y) is the equation of the
tangent plane to the surface z = f (x, y) at (a, b), this
shows that the surface lies above each of its tangent
planes.

13. * Suppose that f (x, y) has continuous second partial
derivatives on the rectangle a ≤ x ≤ b, c ≤ y ≤ d. Use
Taylor’s formula to prove that

d

dx

∫ d

c

f (x, y)dy =

∫ d

c

∂ f (x, y)

∂x
dy

for all x which satisfy a < x < b.

Hint: Let g(x) =

∫ d

c

f (x, y) dy, and use the definition

of the derivative to calculate g′(x).
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Chapter 9

Critical Points

Recall from single variable calculus that if x = a is a local extremum of f (x), then
either f ′(a) = 0 or f ′(a) does not exist. Such points are of interest and are called
critical points of f . But, recall that a critical point is not necessarily a local extremum.
For example, f (x) = x3 at x = 0.

In this chapter, we extend these ideas to functions f (x, y). The second degree Taylor
polynomial will be used to generalize the second derivative test for local extrema.
These ideas will be applied to optimization problems in Chapter 10.

9.1 Local Extrema and Critical Points

We begin with the definitions of local extrema.

DEFINITION

Local Maximum
and Minimum

A point (a, b) is a local maximum point of f if f (x, y) ≤ f (a, b) for all (x, y) in some
neighborhood of (a, b).

A point (a, b) is a local minimum point of f if f (x, y) ≥ f (a, b) for all (x, y) in some
neighborhood of (a, b).

Thinking geometrically, if (a, b) is a local
maximum/minimum point of f and f has
continuous partial derivatives, then (a, b) is a
local maximum/minimum point of the cross-
sections f (x, b) and f (a, y). Thus, (a, b) is a
critical point of both of these cross-sections
and so both partial derivatives of f will be
zero and the tangent plane will be horizontal.

x

y

zz

z = f (a, b)

(a, b)

z = f (x, y)
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98 Chapter 9 Critical Points

THEOREM 1 If (a, b) is a local maximum or minimum point of f , then

fx(a, b) = 0 = fy(a, b)

or at least one of fx or fy does not exist at (a, b).

Proof: Consider the function g defined by g(x) = f (x, b). If (a, b) is a local maxi-
mum/minimum point of f , then x = a is a local maximum/minimum point of g, and
hence either g′(a) = 0 or g′(a) does not exist. Thus it follows that either fx(a, b) = 0
or fx(a, b) does not exist. A similar argument gives fy(a, b) = 0 or fy(a, b) does not
exist. !

DEFINITION

Critical Point

A point (a, b) in the domain of f (x, y) is called a critical point of f if
∂ f

∂x
(a, b) = 0

or
∂ f

∂x
(a, b) does not exist, and

∂ f

∂y
(a, b) = 0 or

∂ f

∂y
(a, b) does not exist.

EXAMPLE 1 Find the critical points of the following functions and determine if they are local
maximum points or local minimum points.

f (x, y) = x2 + y2, g(x, y) = −x2 − y2, h(x, y) = x2 − y2

Solution: For f , we see that fx(x, y) = 2x and fy(x, y) = 2y so (0, 0) is the only
critical point of f . Observe that

f (x, y) = x2 + y2 > 0 = f (0, 0), for all (x, y) ! (0, 0)

so (0, 0) is a local minimum point of f .

For g, we have gx(x, y) = −2x and gy(x, y) = −2y so (0, 0) is the only critical point of
g and

g(x, y) = −x2 − y2 < 0 = g(0, 0), for all (x, y) ! (0, 0)

so (0, 0) is a local maximum point of g.

For h, we have hx(x, y) = 2x and hy(x, y) = −2y so (0, 0) is the only critical point of
h, but we have h(x, 0) > h(0, 0) for any value of x and h(0, y) < h(0, 0) for any value
of y, so (0, 0) is neither a local maximum point nor a local minimum point.

Our solutions for f and g make a lot of sense when we realize that z = f (x, y) is a
paraboloid facing up and z = g(x, y) is a paraboloid facing down. Also, we see that
(0, 0) is the point at the center of the saddle for the saddle surface z = h(x, y) hence
it should not be a local minimum or a local maximum. This motivates the following
definition.












































































































Section 9.1 Local Extrema and Critical Points 99

DEFINITION

Saddle Point

A critical point (a, b) of f (x, y) is called a saddle point of f if in every neighborhood
of (a, b) there exist points (x1, y1) and (x2, y2) such that

f (x1, y1) > f (a, b) and f (x2, y2) < f (a, b)

The problem that we are faced with has two parts.

(1) Given f (x, y), find all critical points of f .
(2) Determine whether the critical points are local maxima, minima or saddle

points.

We now illustrate (1) with an example. (2) is discussed in Section 9.2.

EXAMPLE 2 Find all critical points of f (x, y) = x2y + 3xy2 + xy.

Solution: Differentiate and simplify, to obtain

∂ f

∂x
(x, y) = y(2x + 3y + 1),

∂ f

∂y
(x, y) = x(x + 6y + 1)

In this type of problem it is helpful to take out common factors in the expressions.
To find the critical points of f we must solve the system of two equations

y(2x + 3y + 1) = 0 (9.1)

x(x + 6y + 1) = 0 (9.2)

Observe that (9.1) implies that either y = 0 or 2x+3y+1 = 0. We consider these two
cases:

Case 1: y = 0.
Putting y = 0 into (9.2) we get x(x+1) = 0, giving two values x = 0 or x = −1. Thus,
we have critical points (0, 0) and (−1, 0).

Case 2: 2x + 3y + 1 = 0.
We have 3y = −2x − 1, so (9.2) gives

0 = x(x + 2(3y) + 1) = x(x + 2(−2x − 1) + 1) = −3x2 − x = −x(3x + 1)

giving two values x = 0 and x = − 1
3
. To find the corresponding y values we put these

into 3y = −2x − 1 and get two more critical points (0,− 1
3
) and (− 1

3
,− 1

9
).

So, the critical points are (0, 0),
(

0,− 1
3

)

, (−1, 0), and
(

− 1
3
,− 1

9

)

.












































































































100 Chapter 9 Critical Points

REMARK

1) It is essential to solve equations (9.1) and (9.2) systematically, by considering
all possible cases, in order to find all critical points.

2) You should be aware that we can only explicitly find the critical points for
simple functions f . The equations

fx(x, y) = 0, fy(x, y) = 0

are a system of equations which are generally non-linear, and there is no gen-
eral algorithms for solving such systems exactly. There are, however, numeri-
cal methods for finding approximate solutions, one of which is a generalization
of Newton’s method. If you review the one variable case, you might see how
to generalize it, using the tangent plane. It’s a challenge!

EXERCISE 1 Find all critical points of f (x, y) = xyex−y.

EXERCISE 2 Find all critical points of f (x, y) = x cos(x + y).

EXERCISE 3 Give a function f (x, y) with no critical points.

9.2 The Second Derivative Test

Review of the 1-D case

For a function f (x) of one variable, the second degree Taylor polynomial approxima-
tion is

f (x) ≈ f (a) + f ′(a)(x − a) +
1

2
f ′′(a)(x − a)2

for x sufficiently close to a. If x = a is a critical point of f , then f ′(a) = 0, and the
approximation can be rearranged to give

f (x) − f (a) ≈
1

2
f ′′(a)(x − a)2

Thus, for x sufficiently close to a, f (x)− f (a) has the same sign as f ′′(a). If f ′′(a) > 0,
then f (x) − f (a) > 0 for x sufficiently close to a and x = a is a local minimum point.
If f ′′(a) < 0, then f (x) − f (a) < 0 for x sufficiently close to a and x = a is a local
maximum point. There is no conclusion if f ′′(a) = 0.












































































































Section 9.2 The Second Derivative Test 101

The 2-D Case

For f (x, y) ∈ C2, the second degree Taylor polynomial approximation is

f (x, y) ≈ P2,(a,b)(x, y)

for (x, y) sufficiently close to (a, b). If (a, b) is a critical point of f such that

fx(a, b) = 0 = fy(a, b)

then the approximation can be rearranged to yield

f (x, y)− f (a, b) ≈ 1
2

[

fxx(a, b)(x−a)2+2 fxy(a, b)(x−a)(y−b)+ fyy(a, b)(y−b)2
]

(9.3)

for (x, y) sufficiently close to (a, b). The sign of the expression on the right will
determine the sign of f (x, y) − f (a, b), and hence whether (a, b) is a local maximum,
local minimum or saddle point.

The expression on the right is called a quadratic form, and at this stage it is neces-
sary to discuss some properties of these objects.

Quadratic Forms

DEFINITION

Quadratic Form

A function Q of the form

Q(u, v) = a11u2 + 2a12uv + a22v2

where a11, a12 and a22 are constants, is called a quadratic form on R2.

It is important to observe that one can use matrix notation and write

Q(u, v) = [u v]

[

a11 a12

a12 a22

] [

u
v

]

so that a quadratic form on R2 is determined by a 2 × 2 symmetric matrix.

We classify quadratic forms on R2 in the following way:

(1) If Q(u, v) > 0 for all (u, v) ! (0, 0), then Q(u, v) is said to be positive definite.
(2) If Q(u, v) < 0, for all (u, v) ! (0, 0), then Q(u, v) is said to be negative definite.
(3) If Q(u, v) < 0 for some (u, v) and Q(u, v) > 0 for some other (u, v), then Q(u, v)

is said to be indefinite.
(4) If Q(u, v) does not satisfy any of 1) – 3), then Q(u, v) is said to be semidefinite.

These terms are also used to describe the corresponding symmetric matrices.












































































































102 Chapter 9 Critical Points

EXAMPLE 1 A =

[

2 0
0 3

]

is positive definite, since Q(u, v) = 2u2 + 3v2 > 0, for all (u, v) ! (0, 0).

B =

[

2 0
0 −3

]

is indefinite, since Q(u, v) = 2u2 − 3v2, and Q(u, 0) = 2u2 > 0 for u ! 0,

and Q(0, v) = −3v2 < 0 for v ! 0.

C =

[

2 0
0 0

]

is semidefinite, since Q(u, v) = 2u2 ≥ 0 for all (u, v), and Q(0, v) = 0 for

all v.

REMARK

Semidefinite quadratic forms may be split into two classes, positive semidefinite and
negative semidefinite. The matrix C above would be classified as positive semidefi-
nite.

If A is not a diagonal matrix, the nature of A (or of Q(u, v)) is not immediately
obvious. For example, even if all entries of A are positive, it does not follow that A is
a positive definite matrix.

EXAMPLE 2 Classify the symmetric matrix A =

[

1 3
3 2

]

.

Solution: The associated quadratic form is

Q(u, v) = u2 + 6uv + 2v2

Complete the square, obtaining

Q(u, v) = (u + 3v)2 − 7v2

It is now clear by inspection that A is indefinite, since

Q(u, 0) = u2 > 0, for u ! 0

and
Q(−3v, v) = −7v2 < 0, for v ! 0












































































































Section 9.2 The Second Derivative Test 103

Having introduced quadratic forms, we return to equation (9.3). Let

u = x − a, v = y − b

so that

f (x, y) − f (a, b) ≈
1

2

[

fxx(a, b)u2 + 2 fxy(a, b)uv + fyy(a, b)v2
]

The matrix of the quadratic form on the right is the Hessian matrix of f at (a, b):

H f (a, b) =

[

fxx(a, b) fxy(a, b)
fxy(a, b) fyy(a, b)

]

It is thus plausible that if H f (a, b) is positive definite, then

f (x, y) − f (a, b) > 0

for all (u, v) ! (0, 0) i.e. for all (x, y) ! (a, b) (assuming, of course, that (x, y) is
sufficiently close to (a, b) so that the approximation is sufficiently accurate). In other
words, if H f (a, b) is positive definite, it is plausible that (a, b) is a local minimum
point of f . One can give similar arguments in the cases where H f (a, b) is negative
definite or indefinite, leading to the following theorem.

THEOREM 1 Second Partial Derivatives Test
Suppose that f (x, y) ∈ C2 in some neighborhood of (a, b) and that

fx(a, b) = 0 = fy(a, b)

(1) If H f (a, b) is positive definite, then (a, b) is a local minimum point of f .

(2) If H f (a, b) is negative definite, then (a, b) is a local maximum point of f .

(3) If H f (a, b) is indefinite, then (a, b) is a saddle point of f .

REMARKS

(1) The argument preceding the theorem is not a proof, since it involves an ap-
proximation. One can use Taylor’s formula and a continuity argument to give
a proof. See Section 9.2.

(2) Note the analogy with the second derivative test for functions of one variable.
The requirement g′′(a) > 0, which implies a local minimum, is replaced by the
requirement that the matrix of second partial derivatives H f (a, b) be positive
definite.

To help us classify the Hessian matrix we can use the following theorem from the
theory of quadratic forms.












































































































104 Chapter 9 Critical Points

THEOREM 2 If Q(u, v) = a11u2 + 2a12uv + a22v2 and D = a11a22 − a2
12, then

(1) Q is positive definite if and only if D > 0 and a11 > 0

(2) Q is negative definite if and only if D > 0 and a11 < 0

(3) Q is indefinite if and only if D < 0

(4) Q is semidefinite if and only if D = 0

REMARK

Observe that D is the determinant of the associated symmetric matrix.

EXAMPLE 3 Find and classify all critical points of the function f (x, y) = x3 − 4x2 + 4x − 4xy2.

Solution: To find the critical points we solve the system

0 = fx(x, y) = 3x2 − 8x + 4 − 4y2 (9.4)

0 = fy(x, y) = −8xy (9.5)

From (9.5) we get that x = 0 or y = 0. If x = 0, then (9.4) gives 0 = 4 − 4y2 so
y = ±1. If y = 0, then (9.4) gives 0 = 3x2 − 8x+ 4 = (3x− 2)(x− 2). Hence, we have

critical points (0, 1), (0,−1), (2, 0), and
(

2
3
, 0

)

.

The second partial derivatives are

fxx(x, y) = 6x − 8, fxy(x, y) = −8y, fyy(x, y) = −8x

At
(

2
3
, 0

)

, the Hessian matrix is H f
(

2
3
, 0

)

=

[

−4 0
0 − 16

3

]

, which is clearly negative

definite, since the corresponding quadratic form is Q(u, v) = −4u2 − 16
3

v2. Thus, by

the second partial derivative test,
(

2
3
, 0

)

is a local maximum point.

At (0, 1), we get H f (0, 1) =

[

−8 −8
−8 0

]

. So, det H f (0, 1) = −64 < 0. Thus H f (0, 1)

is indefinite, and by the second partial derivative test, (0, 1) is a saddle point.

Similarly, it follows that (0,−1) and (2, 0) are saddle points.

EXERCISE 1 Fill in the details of Example 3 above.

EXERCISE 2 Find and classify all critical points of the function f (x, y) = x2 + 6xy + 2y2.












































































































Section 9.2 The Second Derivative Test 105

EXERCISE 3 Find and classify all critical points of the function f (x, y) = (x2 + y2 − 1)y.

REMARK

Another way of classifying the Hessian matrix is by finding its eigenvalues. In par-
ticular, a symmetric matrix is positive definite if all of its eigenvalues are positive,
negative definite if all of its eigenvalues are negative, and indefinite if has both posi-
tive and negative eigenvalues.

Degenerate Critical Points

We have seen that quadratic forms (i.e. symmetric matrices) can be classified into
four types: positive definite, negative definite, indefinite and semidefinite. Note that
the second partial derivative test gives a conclusion in the first three cases but makes
no reference to the semidefinite case. In fact, if H f (a, b) is semidefinite, the critical
point (a, b) may be a local maximum point, a local minimum point or a saddle point.
We justify this statement by considering the functions

f (x, y) = x4 + y4, g(x, y) = x4 − y4, h(x, y) = −x4 − y4

For each function (0, 0) is the only critical point, and the Hessian matrix at (0, 0) is
the zero matrix, which is semidefinite. However, since

f (x, y) − f (0, 0) ≥ 0 for all (x, y)

g(x, 0) − g(0, 0) ≥ 0 for all x

g(0, y) − g(0, 0) ≤ 0 for all y

h(x, y) − h(0, 0) ≤ 0 for all (x, y)

it follows that (0, 0) is a local minimum point for f , a saddle point for g and a local
maximum point for h.

If H f (a, b) is semidefinite, so that the second partial derivative test gives no conclu-
sion, we say that the critical point (a, b) is degenerate. In order to classify the critical
point, one has to investigate the sign of f (x, y) − f (a, b) in a small neighborhood of
(a, b).

EXAMPLE 4 Show that (0, 0) is a degenerate critical point of f (x, y) = 2(x − y)2 − x4 − y4 + 3 and
classify it.

Solution: It is a routine matter to show that

∇ f (0, 0) = (0, 0), H f (0, 0) =

[

4 −4
−4 4

]

The quadratic form associated with the Hessian is

Q(u, v) = 4u2 − 8uv + 4v2 = 4(u − v)2 ≥ 0












































































































106 Chapter 9 Critical Points

with Q(u, u) = 0 for all u, hence H f (0, 0) is semidefinite. Thus, (0, 0) is a degenerate
critical point. In order to classify it, consider

f (x, y) − f (0, 0) = 2(x − y)2 − x4 − y4

Observe that
f (x, x) − f (0, 0) = −2x4 < 0 for all x ! 0

and
f (x, 0) − f (0, 0) = 2x2 − x4 = x2(2 − x2) > 0

for all x which satisfy 0 < x2 < 2. So, in any sufficiently small neighborhood of
(0, 0), f (x, y)− f (0, 0) assumes positive and negative values. Hence, (0, 0) is a saddle
point.

Generalizations

The definitions of local maximum point, local minimum point and critical point can
be generalized in the obvious way to functions f of n variables. The Hessian matrix
of f at a is the n × n symmetric matrix given by

H f (a) =

[

∂2 f

∂xi∂x j

(a)

]

where i, j = 1, 2, . . . , n. The Hessian matrix can be classified as positive definite,
negative definite, indefinite or semidefinite by considering the associated quadratic
form in Rn:

Q(u) =

n∑

i, j=1

∂2 f

∂xi∂x j

(a, b)uiu j

as in R2. The second derivative test as stated in R2 now holds in Rn. It can be justified
heuristically by using the second degree Taylor polynomial approximation,

f (x) ≈ P2,a(x)

which leads to

f (x) − f (a) ≈
1

2!

n∑

i, j=1

∂2 f

∂xi∂x j

(a, b)(xi − ai)(x j − aj)

generalizing equation (9.3).












































































































Section 9.2 The Second Derivative Test 107

Level Curves Near a Critical Point

Consider a function f ∈ C2. In Section 7.2 we dis-
cussed the fact that if ∇ f (a, b) ! (0, 0), then the
level curve of f through (a, b) is a smooth curve (at
least sufficiently close to (a, b)). Also, by continu-
ity, ∇ f (x, y) ! (0, 0) for all (x, y) in some neighbor-
hood of (a, b). Thus, if ∇ f (a, b) ! (0, 0), there will
be some neighborhood of (a, b) in which the level
curves of f are smooth non-intersecting curves.

a

∇ f (a)

Level curves f (x, y) = k near a, b
when ∇ f (a, b) ! (0, 0)

(actual shape is not significant)
A point at which ∇ f (a, b) ! (0, 0) is called a regular point of f .

Assume that f has continuous second partial derivatives, and approximate f by its
Taylor polynomial P2,(a,b)(x, y), calculated at the critical point:

f (x, y) ≈ f (a, b)+
1

2

[

fxx(a, b)(x−a)2+2 fxy(a, b)(x−a)(y−b)+ fyy(a, b)(y−b)2
]

(9.6)

The constant term f (a, b) and the factor 1
2

in equation (9.6) do not make a significant
difference to the shape of the level curves. So, it is plausible (and can be proven) that
the level curves of f will be approximated by the level curves of P2,(a,b)(x, y) for (x, y)
sufficiently close to (a, b).

Performing the translation u = x − a and v = y − b, we get a quadratic form

Q(u, v) = a11u2 + 2a12uv + a22v2

Therefore, to approximate the level curves of f near a critical point, we can sketch
the level curves of the associated quadratic form Q(u, v).

To sketch level curves of quadratic forms requires even more linear algebra. The
possible shapes and how to sketch them is covered in Math 235.

Convex Functions

1-D Case

We say that a twice differentiable function f (x) is strictly convex if f ′′(x) > 0 for all
x and f is convex is f ′′(x) ≥ 0 for all x. Thus the term convex means “concave up.”
Convex functions have two interesting properties.

THEOREM 3 If f (x) is twice continuously differentiable and strictly convex, then

(1) f (x) > La(x) = f (a) + f ′(x)(x − a) for all x ! a, for any a ∈ R.

(2) For a < b, f (x) < f (a) + f (b)− f (a)

b−a
(x − a) for x ∈ (a, b).












































































































108 Chapter 9 Critical Points

Proof: (1) Follows from Taylor’s Theorem: f (x) = La(x)+ f ′′(c)

2
(x−a)2 where c is

between a and x. Thus R1,a(x) > 0 for x ! a, giving f (x) > La(x) for all x ! a.

(2) Let g(x) = f (x) −
[

f (a) + f (b)− f (a)

b−a
(x − a)

]

. Then g(a) = g(b) = 0 and g′′(x) =
f ′′(x) > 0. We must show that g(x) < 0 for x ∈ (a, b). By the Mean Value The-
orem f (b)− f (a)

b−a
= f ′(c) for some c ∈ (a, b). Note that g′(x) = f ′(x) − f (b)− f (a)

b−a
=

f ′(x) − f ′(c). Thus g′(c) = 0. Since g′′(x) > 0 then g′(x) is strictly increasing.
Since g′(c) = 0 then g′(x) < 0 on [a, c) and g′(x) > 0 on (c, b]. This implies
that g(x) is strictly decreasing on [a, c] and strictly increasing on [c, b]. Since
g(a) = 0 and g(b) = 0 we get that g(x) < 0 on (a, c] and on [c, b). Therefore,
g(x) < 0 on (a, b), as required.

!

REMARK

(1) says that the graph of f lies above any tangent line, and (2) says that any secant
line lies above the graph of f .

2-D Case

Suppose f (x, y) has continuous second partial derivatives. We say that f is strictly
convex if H f (x, y) is positive definite for all (x, y). By Theorem 2, f is strictly convex
means fxx > 0 and fxx fyy − f 2

xy > 0 for all (x, y). We get a result which is analogous to
Theorem 3.

THEOREM 4 If f (x, y) has continuous second partial derivatives and is strictly convex, then

(1) f (x, y) > L(a,b)(x, y) for all (x, y) ! (a, b), and

(2) f (a1+t(b1−a1), a2+t(b2−a2)) < f (a1, a2)+t[ f (b1, b2)− f (a1, a2)] for 0 < t < 1,
(a1, a2) ! (b1, b2).

Proof: (1) Follows from Taylor’s Theorem:

f = L(a,b)(x, y) +
1

2

[

fxx(c, d)(x − a)2 + 2 fxy(c, d)(x − a)(y − b) + fyy(y − b)2
]

where (c, d) is on the line segment from (a, b) to (x, y). Since fxx(c, d) > 0,
fxx(c, d) fyy(c, d) − fxy(c, d)2 > 0, R1,a,b(x, y) > 0 for (x, y) ! (a, b) by Theorem 2.
Therefore, f (x, y) > L(a,b)(x, y) for (x, y) ! (a, b).

(2) We parameterize the line segment L from (a1, a2) to (b1, b2) by

L(t) = (a1 + t(b1 − a1), a2 + t(b2 − a2)), 0 ≤ t ≤ 1












































































































Section 9.3 Proof of the Second Partial Derivative Test 109

For simplicity write h = b1 − a1 and k = b2 − a2. Define g(t) by

g(t) = f (L(t)), 0 ≤ t ≤ 1 (9.7)

Since f has continuous second partials by hypothesis, we can apply the Chain
Rule to conclude that g′ and g′′ are continuous and are given by

g′(t) = fx(L(t))h + fy(L(t))k (9.8)

g′′(t) = fxx(L(t))h2 + 2 fxy(L(t))hk + fyy(L(t))k2 (9.9)

for 0 ≤ t ≤ 1. Since fxx(L(t)) > 0 and fxx(L(t)) fyy(L(t)) − fxy(L(t))2 > 0 for all t,
g′′(t) > 0 by Theorem 2. Thus, by Theorem 3, part (2):

g(t) < g(0) +
g(1) − g(0)

1 − 0
(t − 0), for 0 < t < 1

Therefore, f (a1 + t(b1 − a1), a2 + t(b2 − a2)) < f (a1, a2) + t[ f (b1, b2) − f (a1, a2)]
for 0 < t < 1 as required.

!

REMARK

(1) says that the graph of f lies above the tangent plane and (2) says that the cross-
section of the graph of f above the line segment from (a1, a2) to (b1, b2) lies below
the secant line.

EXAMPLE 5 If f (x) = x2, then f ′′(x) = 2 > 0 for all x, so f (x) is strictly convex.

If f (x, y) = x2 + y2, then fxx = 2, fxy = 0, and fyx = 2, so fxx fyy − f 2
xy = 4 > 0, so f is

strictly convex.

THEOREM 5 If f (x, y) ∈ C2 is strictly convex and has a critical point (c, d), then f (x, y) > f (c, d)
for all (x, y) ! (c, d) and f has no other critical point.

Proof: Note that L(c,d)(x, y) = f (c, d). Thus, f (x, y) > f (c, d) for all (x, y) ! (c, d)
by Theorem 4, part (1). If f has a second critical point (c1, d1), then by the reasoning
just given f (c1, d1) > f (c, d) and f (c, d) > f (c1, d1) which is a contradiction. !

9.3 Proof of the Second Partial Derivative Test

We now want to prove part (1) of the second partial derivative test. The proof depends
significantly on the hypothesis that the second partials of f are continuous, and on
a plausible property of positive definite matrices: if you make a small change to the
entries of a positive definite matrix then the new matrix is positive definite. This is
proved separately as a lemma 1.

1This proof was provided by D. Siegel












































































































110 Chapter 9 Critical Points

LEMMA 1 Let

[

a b
b c

]

be a positive definite matrix. If |ã − a|, |b̃ − b| and |c̃ − c| are sufficiently

small, then

[

ã b̃

b̃ c̃

]

is positive definite.

Proof: Let Q and Q̃ be the quadratic forms determined by the given matrices i.e.

Q(u, v) = au2 + 2buv + cv2 (9.10)

and similarly for Q̃(u, v). We perform the change of variables

u = r cos θ, v = r sin θ

to obtain
Q(u, v) = r2 p(θ) (9.11)

where
p(θ) = a cos2 θ + 2b cos θ sin θ + c sin2 θ

Since for r = 1, Q(u, v) = p(θ), and Q is positive definite, we must have p(θ) > 0 for
all θ, 0 ≤ θ ≤ 2π.

Let
k = min

0≤θ≤2π
p(θ)

Then k > 0 and by equation (9.11)

Q(u, v) ≥ kr2 for all (u, v) ! (0, 0) (9.12)

We are given that |ã − a|, |b̃ − b| and |c̃ − c| are sufficiently small. Let

δ = max{|ã − a|, |b̃ − b|, |c̃ − c|}

By equation (9.10) and the triangle inequality,

|Q(u, v) − Q̃(u, v)| ≤ |ã − a|u2 + 2|b̃ − b||u||v| + |c̃ − c|v2

≤ δ(u2 + 2|u||v| + v2)

= δ(|u| + |v|)2

= δr2(| cos θ| + | sin θ|)2

< 4δr2

We now choose δ = 1
8
k. Then

|Q(u, v) − Q̃(u, v)| <
1

2
kr2
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which implies

Q̃(u, v) ≥ Q(u, v) −
1

2
kr2

≥ kr2 −
1

2
kr2, by (9.12)

=
1

2
kr2

This shows that Q̃(u, v) > 0 for all (u, v) ! (0, 0). Therefore, Q̃(u, v) is positive
definite. !

REMARK

The lemma is also true if “positive definite” is replaced by “negative definite” or
“indefinite”.

We now prove the second partial derivative test. For convenience we restate the
theorem.

THEOREM 2 (The Second Partial Derivative Test)

Suppose that f (x, y) ∈ C2 in some neighborhood of (a, b) and that

fx(a, b) = 0 = fy(a, b)

(1) If H f (a, b) is positive definite, then (a, b) is a local minimum point of f .

(2) If H f (a, b) is negative definite, then (a, b) is a local maximum point of f .

(3) If H f (a, b) is indefinite, then (a, b) is a saddle point of f .

Proof: We will prove (1).

We apply Taylor’s formula with second order remainder. Since

fx(a, b) = 0 = fy(a, b)

Taylor’s formula can be written as

f (x, y)− f (a, b) =
1

2

[

fxx(c, d)(x−a)2+2 fxy(c, d)(x−a)(y−b)+ fyy(c, d)(y−b)2
]

(9.13)

where (c, d) lies on the line segment joining (a, b) and (x, y). The coefficient matrix
in the quadratic expression on the right side of (9.13) is the Hessian matrix H f (c, d).

We are given that H f (a, b) is positive definite. By the lemma, there exists ε > 0 such
that if

| fxx(x, y) − fxx(a, b)| < ε, | fxy(x, y) − fxy(a, b)| < ε, | fyy(x, y) − fyy(a, b)| < ε (9.14)












































































































112 Chapter 9 Critical Points

then H f (x, y) is positive definite. Since the second partials of f are continuous at
(a, b), the definition of continuity implies that there exists a δ > 0 such that

‖(x, y) − (a, b)‖ < δ

implies (9.14) and hence that H f (x, y) is positive definite. Since

‖(c, d) − (a, b)‖ < ‖(x, y) − (a, b)‖

it follows that H f (c, d) is also positive definite. It now follows from equation (9.13)
and the definition of positive definite matrix, that if 0 < ‖(x, y) − (a, b)‖ < δ, then
f (x, y) − f (a, b) > 0. Thus, by definition (a, b) is a local minimum point of f . !

Parts (2) and (3) of the second derivative test can be proved in a similar way using
the modified lemma.

Chapter 9 Problem Set

1. Find and classify the critical points of the function f ,
where

(a) f (x, y) = xy2 − x2y − xy + x2

(b) f (x, y) = xyex+2y

(c) f (x, y) = (x2 + y2 − 1)y

(d) f (x, y) = x sin(x + y)

2. Find and classify the critical points of

f (x, y) = x2 − 2x + y3 − xy2

3. Find and classify the critical points of

f (x, y) = (x + y)(xy + 1)

4. Find and classify the critical points of

f (x, y) = xy2 + x2y − 4xy

5. Find and classify the critical points of

f (x, y) = 4x3 + 6x2y + 3xy2 − 3x

6. Find and classify the critical points of

f (x, y) = x2 + y2 + x2y + 4

7. If the Hessian matrix is

(

1 −1
−1 8

)

at a critical point

(a, b), then (a, b) is a local of f (fill in
the blank).

8. Find and classify all of the critical points for the fol-
lowing functions.

(a) f (x, y) = x3 + y3 − 3x2 + 3y2

(b) f (x, y) = (x2 + y2)e−x2

9. In each case invent a non-constant differentiable func-
tion f (x, y) with the stated property. Classify the crit-
ical points of f , sketch the level curves, and describe
the surface z = f (x, y).

(a) All points on the line y = 2x are critical points of
f .

(b) All points on the circle x2 + y2 = 1 are critical
points of f .

10. (a) Suppose that f (x, y) is a C2 function with one
critical point (a, b) which has the property that
H f (x, y) is positive definite for all (x, y), except
possibly (x, y) = (a, b). Prove that (a, b) is
the unique absolute minimum for f on R2, i.e.
f (x, y) ≥ f (a, b).

(b) Let f (x, y) = x2 + y2 + xy − x − 2y. Show that
f has one critical point and deduce that this is a
unique global minimum.












































































































Chapter 10

Optimization Problems

10.1 The Extreme Value Theorem

As we saw in Calculus 1, one is often interested in finding the largest or smallest
possible value of a function f on some specified set S . We start with some standard
definitions.

DEFINITION

Absolute
Maximum and

Minimum

Given a function f (x, y) and a set S ⊆ R2,

1. a point (a, b) ∈ S is an absolute maximum point of f on S if

f (x, y) ≤ f (a, b) for all (x, y) ∈ S

The value f (a, b) is called the absolute maximum value of f on S .
2. a point (a, b) ∈ S is an absolute minimum point of f on S if

f (x, y) ≥ f (a, b) for all (x, y) ∈ S

The value f (a, b) is called the absolute minimum value of f on S .

The Extreme Value Theorem

Whether or not f has a maximum/minimum value on S depends on f and on the set
S . Recall from Calculus 1 that the Extreme Value Theorem gives conditions which
imply the existence of a maximum value and minimum value of f on an interval I.
Here is the theorem.

THEOREM 1 (The Extreme Value Theorem)

If f (x) is continuous on a finite closed interval I, then there exists c1, c2 ∈ I such that

f (c1) ≤ f (x) ≤ f (c2) for all x ∈ I

113












































































































114 Chapter 10 Optimization Problems

For our purposes, the important thing is to be able to give counterexamples to show
that the conclusion may not be valid if the hypotheses are not satisfied.

EXERCISE 1 Give a function f (x) and an interval I such that

1. I is closed, but f does not have an absolute maximum on I.
2. I is finite and f is continuous on I, but f does not have an absolute maximum

on I.
3. I is infinite and f is continuous on I, but f does not have an absolute minimum.

In order to generalize this theorem to functions of two variables, we need to general-
ize the concept of a finite closed interval to sets in R2.

DEFINITION

Bounded Set

A set S ⊂ R2 is said to be bounded if and only if it is contained in some neighbour-
hood of the origin.

Observe that the definition implies that every point in S must have finite distance
from the origin.

Intuitively, a “boundary point” of a set S ⊂ R2 is
a point which lies on the “edge” of S . Here is the
definition.

DEFINITION

Boundary Point

Given a set S ⊂ R2, a point (a, b) ∈ R2 is said to be a
boundary point of S if and only if every neighbour-
hood of (a, b) contains at least one point in S and one
point not in S .

x

y

S

B(S )

a ∈ S

b ∈ B(S )

c " S

DEFINITION

Boundary of S

The set B(S ) of all boundary points of S is called the boundary of S .

DEFINITION

Closed Set

A set S ⊆ R2 is said to be closed if S contains all of its boundary points.

EXAMPLE 1 Consider S = {(x, y) ∈ R2 | 1 < ‖(x, y)‖ ≤ 2}. The
boundary of S is the set of all boundary points. So, as
indicated in the diagram, the boundary of S is

B(S ) = {(x, y) ∈ R2 | ‖(x, y)‖ = 1 or ‖(x, y)‖ = 2}

Since the points (x, y) such that ‖(x, y)‖ = 1 are not in
S , we have that S is not closed.

x

y

S

B(S )
‖x‖ = 2

‖x‖ = 1
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EXAMPLE 2 Consider S = {(x, y) ∈ R2 | x ≥ 0}. The boundary of S is the y-axis which is in S .
Therefore, S is closed.

Observe that the concept of a “closed set” in R2 generalizes the idea of a closed
interval in R.

We can now state the generalization of the Extreme Value Theorem to R2.

THEOREM 2 If f (x, y) is continuous on a closed and bounded set S ⊂ R2, then there exists points
(a, b), (c, d) ∈ S such that

f (a, b) ≤ f (x, y) ≤ f (c, d) for all (x, y) ∈ S

The proof is beyond the scope of this course.

Here are some counterexamples to show that the conclusion may not be valid if either
hypothesis is not satisfied.

EXAMPLE 3 Let S = {(x, y) | x2 + y2 ≤ 1} and f (x, y) =







1 − x2 − y2 if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

Observe that S is the unit disc and hence is clearly bounded and it is closed since it
contains its boundary, the circle x2 + y2 = 1. However, observe that for (x, y) ∈ S
we can make the values of f arbitrarily close to 1. But, since f is not continuous at
(0, 0), there is no (x, y) ∈ S such that f (x, y) = 1. So, f does not have a maximum
value on S .

EXAMPLE 4 Let f (x, y) = x2 + y2 and S = R2.

Clearly f is continuous on S . However, since S is not bounded, f does not have a
maximum value on S . In particular, the values of f can be made arbitrarily large by
increasing the values of x and/or y.

EXAMPLE 5 Let f (x, y) = x2 + y2 and S = {(x, y) | x2 + y2 < 1}

Clearly f is continuous on S . Observe that for (x, y) ∈ S we can make the values of f
arbitrarily close to 1. But, since S does not contain its boundary, there is no (x, y) ∈ S
such that f (x, y) = 1. Consequently, f does not have a maximum value on S .












































































































116 Chapter 10 Optimization Problems

REMARK

A function f (x, y) may have an absolute maximum and/or an absolute minimum on
a set S ⊆ R2 even if the conditions are not satisfied. We just cannot guarantee the
existence with the theorem.

EXAMPLE 6 Let S = {(x, y) ∈ R2 | x > −1, y ∈ R} and let f (x, y) =







1 if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)

Clearly f is not continuous on S and S is neither closed nor bounded. However,
clearly 1 is the maximum of f on S and 0 is the minimum.

10.2 Algorithm for Extreme Values

Recall that if f (x) is continuous, then the maximum value and minimum value of f
on an interval [a, b] occur either at a critical point of f (i.e. f ′(c) = 0, or f ′(c) does
not exist) or at an endpoint of the interval. Moreover, our algorithm for finding the
maximum and/or minimum value for f on [a, b] was to find the values of f at any
critical points of f in [a, b] and compare them to the values of f at the endpoints
x = a and x = b.

This approach can be generalized to f (x, y). Let S ⊂ R2 be a closed and bounded set,
with boundary B(S ) and suppose that f is continuous on S . The maximum value and
minimum value of f on S occur either at a critical point of f that is in S , or at a point
on the boundary of S . Thus, we get the following procedure which corresponds to
what we were doing for functions of one variable in Calculus 1.

ALGORITHM

Let S ⊂ R2 be closed and bounded. To find the maximum and/or minimum value of
a function f (x, y) that is continuous on S ,

(1) Find all critical points of f that are contained in S . Evaluate f at each such
point.

(2) Find the maximum and minimum points of f on the boundary B(S ).

(3) The maximum value of f on S is the largest value of the function found in
steps (1) and (2). The minimum value of f on S is the smallest value of the
function found in steps (1) and (2).












































































































Section 10.2 Algorithm for Extreme Values 117

REMARKS

1. The absolute maximum and/or minimum value may occur at more than one
point in S .

2. It is not necessary to determine whether the critical points are local maximum
or minimum points.

EXAMPLE 1 Find the maximum value of f (x, y) = xy on the set

S = {(x, y) | x2 + y2 ≤ 1}

Solution: First, we observe that ∇ f (x, y) = (y, x), hence the only critical point of f
is (0, 0) which is in S . We have f (0, 0) = 0.

Second, we look for the maximum value of f on the boundary B(S ) of S . To do this,
we describe the boundary (the unit circle x2 + y2 = 1) in parametric form:

x = cos t, y = sin t, 0 ≤ t ≤ 2π

On B(S ), f has the values

g(t) = f (cos t, sin t) = cos t sin t =
1

2
sin 2t

The problem now is to find the maximum value of g(t) on the interval 0 ≤ t ≤ 2π.
We use the method from Calculus 1. We have

g′(t) = cos 2t

Hence, on 0 ≤ t ≤ 2π, the critical point of g are at t =
π

4
,

3π

4
,

5π

4
,

7π

4
. We have

g
(π

4

)

=
1

2
, g

(

3π

4

)

= −
1

2
, g

(

5π

4

)

=
1

2
, g

(

7π

4

)

= −
1

2

Finally, we have g(0) = 0 and g(2π) = 0.

So, the maximum value of f on the boundary B(S ) is 1
2

and occurs at
(

1√
2
, 1√

2

)

and
(

− 1√
2
,− 1√

2

)

.

Comparing the values we found in the first and second
step, we see that the maximum value of f on S is 1

2
and

occurs on the boundary at
(

± 1√
2
,± 1√

2

)

.

x

y

S

B(S ) (

1√
2
, 1√

2

)

(

−1√
2
, −1√

2

)

max. point

max.
point












































































































118 Chapter 10 Optimization Problems

EXERCISE 1 Find the maximum of f (x, y) = x2y − y on the set S = {(x, y) | 9x2 + 4y2 ≤ 36}.

EXAMPLE 2 Find the maximum and minimum value of f (x, y) = xy − 2x − y + 2 on the triangular
region S with vertices (0, 0), (2, 0) and (0, 3).

Solution: First, we observe that ∇ f (x, y) = (y − 2, x − 1) so the only critical point of
f is (1, 2). Since (1, 2) " S , this critical point plays no part in the solution.

The second step is to evaluate f on the boundary B(S ) of S . This has to be done on
the three straight line segments separately. The values of f on B(S ) define a function
of one variable, which we denote by g.

Case 1: x = 0, 0 ≤ y ≤ 3.

Let g(y) = f (0, y) = −y + 2. By inspection, the
maximum of g on the interval [0, 3] occurs at the
end point y = 0, and the minimum occurs at the
end point y = 3. So, (0, 0) and (0, 3) are possible
maximum and minimum points for f .

x

y

S

(2, 0)(0, 0)

(0, 3)

(1, 2)

max.
min.

x
2 +

y
3 = 1

Case 2: y = 0, 0 ≤ x ≤ 2.

Let g(x) = f (x, 0) = −2x + 2. As in Case 1, this leads to (0, 0) and (2, 0) as
possible maximum and minimum points for f .

Case 3: y = 3 − 3
2
x, 0 ≤ x ≤ 2.

Let g(x) = f (x, 3 − 3
2
x) = − 3

2
x2 + 5

2
x − 1, after simplifying. To find the critical

points of g we solve

0 = g′(x) = −3x +
5

2

This gives x = 5
6
. Hence,

(
5
6
, 7

4

)

and the end points (0, 3) and (2, 0) are possible
maximum and minimum points of f .

Now evaluate f at all points found above:

f (0, 0) = 2, f (0, 3) = −1, f (2, 0) = −2, f

(

5

6
,

7

4

)

=
1

24

Consequently, the maximum value of f on S is f (0, 0) = 2, and minimum value of f
on S is f (2, 0) = −2.

EXERCISE 2 Find the maximum value of the function f (x, y) = x2y + xy2 on the triangular region
with vertices (0, 0), (0, 1) and (1, 0).
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10.3 Optimization with Constraints

In many real world problems, we wish to find the maximum (minimum) of a function
f (x, y) subject to a constraint g(x, y) = k.

For example, assume that a manufacturer has three product lines. Let x, y, z denote
the number of articles produced of each type and let a, b, c denote the profit per article
for the three product lines respectively. The total profit is given by

P(x, y, z) = ax + by + cz

Further assume that the manufacturer wishes to maintain production costs at a con-
stant level k dollars per day. The production costs C depend on the number of articles
x, y, z. That is, we require that

C(x, y, z) = k

The problem is to find the maximum profit P(x, y, z) subject to the constraint C(x, y, z) =
k.

Observe that in step 2 of our algorithm for finding extreme values, we also need to
find the maximum and/or minimum of f subject to a constraint, namely the boundary
of the region. In the last section, we did this by finding a parametric representation for
the boundary. Of course, in many cases this may be extremely difficult or impossible
to do.

So, we now derive an algorithm which will allow us to find the maximum and/or
minimum of a differentiable function f on a smooth curve g(x, y) = k without having
to parameterize the curve.

Method of Lagrange Multipliers

We want to find the maximum (minimum) value of a differentiable function f (x, y)
subject to the constraint g(x, y) = k where g ∈ C1, or, more geometrically, find the
maximum(minimum) value of f (x, y) on the level set g(x, y) = k.

If f (x, y) has a local maximum (or minimum) at (a, b) relative to nearby points on the
curve g(x, y) = k and ∇g(a, b) ! (0, 0), then, by the Implicit Function Theorem (see
Appendix A), g(x, y) = k can be described by parametric equations

x = p(t), y = q(t) (10.1)

with p and q differentiable, and (a, b) = (p(t0), q(t0)) for some t0. Define

u(t) = f (p(t), q(t))

The function u gives the values of f on the constraint curve, and hence has a local
maximum (or minimum) at t0. It follows that

u′(t0) = 0 (10.2)












































































































120 Chapter 10 Optimization Problems

Assuming f is differentiable we can apply the Chain Rule to get

u′(t) = fx(p(t), q(t))p′(t) + fy(p(t), q(t))q′(t)

Evaluating this at t0 and using (10.2) gives

0 = fx(a, b)p′(t0) + fy(a, b)q′(t0)

This can be written as
∇ f (a, b) ·

(

p′(t0), q′(t0)
)

= 0 (10.3)

Recall the geometric interpretation of the gradient vector∇g(a, b) proven in Theorem 7.2.2
that ∇g(a, b), if non-zero, is orthogonal to the level curve g(x, y) = k at (a, b). Thus,
since (p′(t0), q′(t0)) is the tangent vector to the constraint curve (10.1) we also have

∇g(a, b) ·
(

p′(t0), q′(t0)
)

= 0 (10.4)

x

y

∇g(a, b)

∇ f (a, b)

(a, b)

T

g(x, y) = k

Since we are working in two dimensions, equations (10.3) and (10.4) imply that
∇ f (a, b) and ∇g(a, b) are scalar multiples of each other. That is, there exists a con-
stant λ such that

∇ f (a, b) = λ∇g(a, b)

This leads to the following procedure, called the Method of Lagrange Multipliers.
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ALGORITHM (Lagrange Multiplier Algorithm)

Assume that f (x, y) is a differentiable function and g ∈ C1. To find the maximum
value and minimum value of f subject to the constraint g(x, y) = k, evaluate f (x, y)
at all points (a, b) which satisfy one of the following conditions.

(1) ∇ f (a, b) = λ∇g(a, b) and g(a, b) = k.

(2) ∇g(a, b) = (0, 0) and g(a, b) = k.

(3) (a, b) is an end point of the curve g(x, y) = k.

The maximum/minimum value of f (x, y) is the greatest/least value of f obtained at
the points found in (1)-(3).

To find the points (a, b) in (1) we have to solve the system of 3 equations in 3 un-
knowns

fx(x, y) = λgx(x, y)

fy(x, y) = λgy(x, y)

g(x, y) = k

for x and y. It is important that this is done systematically so that you can ensure that
you have found all possible points. We will demonstrate this in the examples below.

REMARKS

1. The variable λ, called the Lagrange multiplier, is not required for our pur-
poses and so should be eliminated. However, in some real world applications,
the value of λ can be extremely useful.

2. Case (2) and (3) are both exceptional. Observe that case (2) must be included
since we assumed that ∇g(a, b) ! (0, 0) in the derivation. Condition (3) will
typically only arise if there are restrictions on the domain of g(x, y) that result
in the curve g(x, y) = k having end points. For instance, if g(x, y) = x2 + y2,
then the curve g(x, y) = 1 (the unit circle) does not have end points if there
are no restrictions on x and y. However, if we restrict the domain of g to
{(x, y) : y ≥ 0}, then there will be two end points: (−1, 0) and (1, 0).

3. If the curve g(x, y) = k is unbounded, then one must consider lim
‖(x,y)‖→∞

f (x, y)

for (x, y) satisfying g(x, y) = k.












































































































122 Chapter 10 Optimization Problems

EXAMPLE 1 Find the maximum value of 6x + 4y − 7 on the ellipse 3x2 + y2 = 28.

Solution: We want to find the maximum of

f (x, y) = 6x + 4y − 7

subject to the constraint
g(x, y) = 3x2 + y2 = 28

(1) ∇ f (x, y) = λ∇g(x, y), g(x, y) = 28.

Differentiating gives ∇ f (x, y) = (6, 4) and ∇g(x, y) = (6x, 2y). Comparing entries of
∇ f (x, y) = λ∇g(x, y) and adding the constraint equation g(x, y) = 28 gives the system
of equations

6 = 6λx (10.5)

4 = 2λy (10.6)

3x2 + y2 = 28 (10.7)

By equation (10.5), x ! 0 and so λ = 1
x
, which when substituted in equation (10.6)

gives y = 2x . We substitute this into (10.7) and solve for x, obtaining x = ±2. For
x = 2 we get y = 2(2) = 4, for x = −2 we get y = 2(−2) = −4. Thus, we obtain two
points (2, 4) and (−2,−4).

(2) ∇g(x, y) = (0, 0), g(x, y) = 28.

We have (0, 0) = ∇g(x, y) = (6x, 2y) implies x = y = 0, which does not satisfy the
constraint (10.7). Hence, there are no points in this step.

(3) Check end points.

There are no endpoints since the constraint is a closed curve (an ellipse).

Finally, we evaluate f at all the points found in the above 3 steps. We get

f (2, 4) = 21

f (−2,−4) = −35

So, the maximum value of f on 3x2 + y2 = 28
is 21 and occurs at (2, 4).

We can view the result geometrically. The
straight lines are the level curves

f (x, y) = 6x + 4y − 7 = k

Notice that ∇ f and ∇g are parallel at the maxi-
mum point.

x

y

∇g

∇ f

(2, 4)

incre
asi

ng
f (x
, y)

f (x, y) = 21

(max. value)

3x2 + y2 = 28
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EXAMPLE 2 Find the maximum and minimum values of f (x, y) = y on the piriform curve defined
by y2 + x4 − x3 = 0.

Solution: We have f (x, y) = y and constraint g(x, y) = y2 + x4 − x3 = 0.

(1) ∇ f (x, y) = λ∇g(x, y), g(x, y) = 0.

We get ∇ f (x, y) = (0, 1) and ∇g(x, y) = (4x3 − 3x2, 2y), so we need to solve

0 = λ(4x3 − 3x2) = x2(4x − 3)λ (10.8)

1 = λ(2y) (10.9)

0 = y2 + x4 − x3 (10.10)

Clearly λ ! 0 because of (10.9), so (10.8) gives x = 0 or x =
3

4
.

If x = 0, then (10.10) gives y = 0 which does not satisfy (10.9).

If x =
3

4
, then (10.10) gives 0 = y2 −

27

256
which implies y = ±

3
√

3

16
. Hence, we get

two points





3

4
,

3
√

3

16



 and





3

4
,−

3
√

3

16



.

(2) ∇g(x, y) = (0, 0), g(x, y) = 0.

We have
(0, 0) = ∇g(x, y) = (4x3 − 3x2, 2y)

which implies 0 = 4x3 − 3x2 = x2(4x − 3) and 2y = 0. So, we get points (0, 0), and
(

3

4
, 0

)

. However,
(

3
4
, 0

)

is not on the constraint curve, so we just have one point (0, 0).

(3) Check end points.

Graphing the piriform curve, we see that it is closed. So, there are no end points.

Evaluating f at all the points found above gives

f





3

4
,−

3
√

3

16



 = −
3
√

3

16

f





3

4
,

3
√

3

16



 =
3
√

3

16

f (0, 0) = 0

Thus, the maximum value is
3
√

3

16
at





3

4
,

3
√

3

16



 and the minimum value is −
3
√

3

16
at





3

4
,−

3
√

3

16



.
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EXAMPLE 3 Let R be the region bounded by the curve x =
√

1 − y2 and the y-axis. Find the
maximum and minimum value of f (x, y) = x2 − 1

2
x + y2 on the region R.

Solution: Observe that this is an extreme values on a region problem as in
Section 10.2. Thus, we apply our algorithm from Section 10.2.

We first find critical points of f inside the region R. We have

∇ f = (2x −
1

2
, 2y) = (0, 0)⇒ x =

1

4
, y = 0

There is one critical point

(

1

4
, 0

)

, which is inside the region and f

(

1

4
, 0

)

= −
1

16
.

Next, we find the maximum and minimum of f on the boundary of R. The boundary

has two parts, the y-axis and the semi-circle x =
√

1 − y2.

For the y-axis, we have x = 0, −1 ≤ y ≤ 1, so on this line we have f (0, y) = 0 + y2

which we know has minimum 0 at (0, 0) and maximum 1 and (0,±1).

For the semi-circle, instead of parameterizing it as we did in Section 10.2, we will
use the method of Lagrange multipliers. To make the calculations easier, we simplify
the constraint to x2 + y2 = 1, x ≥ 0. Hence, we take g(x, y) = x2 + y2 = 1, x ≥ 0.

(1) ∇ f (x, y) = λ∇g(x, y), g(x, y) = 1.

2x −
1

2
= λ(2x) (10.11)

2y = λ(2y) (10.12)

x2 + y2 = 1, x ≥ 0 (10.13)

From (10.12) we see that y = 0 or λ = 1.

If y = 0, then (10.13) gives x = 1 (since x ≥ 0). With λ =
3

4
(10.11) is also satisfied.

Thus, (1, 0) is a point.

If λ = 1, then (10.11) is 2x −
1

2
= 2x, which has no solutions, so we get no points.

(2) ∇g(x, y) = (0, 0), g(x, y) = 1.

We have ∇g(x, y) = (2x, 2y) = (0, 0) only if x = 0 and y = 0, but this does not satisfy
the constraint so no points.

(3) Check end points.

The semi-circle has end points when x = 0, so at (0, 1) and (0,−1).

Putting all the points into f gives

f (1, 0) =
1

2
, f (0, 1) = 1, f (0,−1) = 1
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Thus, on the semi-circle the maximum of f is 1 at (0,±1) and the minimum of f is
1

2
at (1, 0).

Comparing the values of f found in all steps, we find that the maximum of f on R is

1 at (0,±1) and the minimum of f is −
1

16
at

(

1

4
, 0

)

.

EXERCISE 1 Find the maximum value of xy on the circle x2 + y2 = 1. Sketch the constraint curve
and some level curves of xy showing the gradient vectors at the maximum point.

EXERCISE 2 Find the maximum and minimum value of F(x, y) = x2 + 2x + y2 subject to the
constraint x2 + 4y2 ≤ 24.

Functions of Three Variables

We can generalize the algorithm for f (x, y) to work for functions of three variables
f (x, y, z).

ALGORITHM

To find the maximum/minimum value of a differentiable function f (x, y, z) subject
to g(x, y, z) = k such that g ∈ C1, we evaluate f (x, y, z) at all points (a, b, c) which
satisfy one of the following:

(1) ∇ f (a, b, c) = λ∇g(a, b, c) and g(a, b, c) = k.

(2) ∇g(a, b, c) = (0, 0, 0) and g(a, b, c) = k.

(3) (a, b, c) is an edge point of the surface g(x, y, z) = k. (See Remark below.)

The maximum/minimum value of f (x, y, z) is the largest/smallest value of f obtained
from all points found in (1)-(3).

REMARK

1. If condition (1) in the algorithm holds, it follows that the level surface
f (x, y, z) = f (a, b, c) and the constraint surface g(x, y, z) = k are tangent at
the point (a, b, c), since their normals coincide (see Theorem 7.3.1).












































































































126 Chapter 10 Optimization Problems

2. The surface g(x, y, z) = k will usually not have any edge points. Edge points
typically arise when we introduce restrictions to the domain of g. We will not
formally define what an edge point is; instead, we shall illustrate with exam-
ples. Let g(x, y, z) = x2+y2+z2. Then the surface g(x, y, z) = 1 (the unit sphere)
has no edge points. However, if we restrict the domain of g to {(x, y, z) : z ≥ 0},
then the resulting surface (the upper unit hemisphere) will have edge points all
along the unit circle in the xy-plane:

Here is another example. If g(x, y, z) = x + y + z then the surface g(x, y, z) = 3
is a plane in R3. It has no edge points. If we restrict the domain of g to
{(x, y, z) : x, y, z ≥ 0}, then the resulting surface will be the portion of the plane
in the first octant. This is a triangle. It has edge points along each of its three
boundary edges:

EXAMPLE 4 Find the point on the sphere x2 + y2 + z2 = 1 which is closest to the point (1, 2, 2).

Solution: We want to minimize the distance between the point (1, 2, 2) and a point
(x, y, z) on the given sphere. To simplify things, we consider the square of this dis-
tance, which is given by the function

f (x, y, z) = (x − 1)2 + (y − 2)2 + (z − 2)2

The constraint is g(x, y, z) = x2 + y2 + z2 = 1.

(1) ∇ f (x, y, z) = λ∇g(x, y, z), g(x, y, z) = 1.












































































































Section 10.3 Optimization with Constraints 127

2(x − 1) = 2λx (10.14)

2(y − 2) = 2λy (10.15)

2(z − 2) = 2λz (10.16)

x2 + y2 + z2 = 1 (10.17)

Observe that (10.14), (10.15), and (10.16) give that x ! 0, y ! 0, and z ! 0. Hence,
solving these equations for λ and setting them equal to each other gives

x − 1

x
=

y − 2

y
=

z − 2

z

Looking at each pair, we find that y = 2x, z = 2x, and thus y = z. Putting these into

the constraint (10.17) gives two points,

(

1

3
,

2

3
,

2

3

)

and

(

−
1

3
,−

2

3
,−

2

3

)

.

(2) ∇g(x, y, z) = (0, 0, 0), g(x, y, z) = 1.

We have ∇g(x, y, z) = (0, 0, 0) implies x = y = z = 0, which does not satisfy the
constraint.

(3) Edge points

There are no edge points on the unit sphere.

Evaluating f at all the points found above gives

f

(

1

3
,

2

3
,

2

3

)

= 4

f

(

−
1

3
,−

2

3
,−

2

3

)

= 16

Thus, the point

(

1

3
,

2

3
,

2

3

)

is the point on the sphere x2 + y2 + z2 = 1 that is closest to

the point (1, 2, 2).

REMARK

Keep in mind the geometric interpretation. The level sets f (x, y, z) = k are spheres
centered on the point (1, 2, 2). The minimum distance occurs when one of the spheres
touches (i.e. is tangent to) the constraint surface which is the sphere g(x, y, z) = 1. At
the point of tangency the normals are parallel, i.e. ∇ f = λ∇g.

EXERCISE 3 Find the points on the surface z2 = xy + 1 that are closest to the origin.












































































































128 Chapter 10 Optimization Problems

Generalization

The method of Lagrange multipliers can be generalized to functions of n variables
f (x), x ∈ Rn and with r constraints of the form

g1(x) = 0, g2(x) = 0, . . . , gr(x) = 0 (10.18)

In order to find the possible maximum and minimum points of f subject to the con-
straints (10.18), one has to find all points a such that

∇ f (a) = λ1∇g1(a) + · · · + λr∇gr(a), and gi(a) = 0, 1 ≤ i ≤ r

The scalars λ1, . . . , λr are the Lagrange multipliers. When r = 1, and n = 2 or 3, this
reduces to the previous algorithms.

Chapter 10 Problem Set

1. Find the maximum and minimum values of the func-
tion f (x, y) = xy − x3y2 on the square 0 ≤ x ≤ 1,
0 ≤ y ≤ 1.

2. Find the maximum and minimum values of the func-
tion f (x, y) = x + 2y on the disc x2 + y2 ≤ 4.

3. Find the maximum and minimum values of the func-
tion f (x, y) = xye−

1
2 x− 1

3 y on the triangular set with ver-
tices (0, 0), (2, 0) and (0, 3).

4. Find the maximum and minimum of the function
f (x, y) = x3 − 3x + y2 + 2y on the region bounded by
the lines x = 0, y = 0, x + y = 1.

5. The steady-state temperature at position (x, y) of a
metal disc, x2 + y2 ≤ b2, where b is a positive constant,
is given by

f (x, y) = 100 + x3 − 3xy2

Find the hottest and coldest points on the disc.

6. (a) Use Lagrange multipliers to find the greatest and
least distance of the curve 6x2 + 4xy + 3y2 = 14
from the origin.

(b) Illustrate the result graphically by drawing the
constraint curve g(x, y) = 0, the level curves
f (x, y) = C, and the gradient vectors ∇ f and ∇g.
Clearly indicate the relation between the level
curves of f and the constraint curve at the maxi-
mum and minimum.

7. Assume the earth is located at (x, y, z) = (0, 0, 0) and
the path of a comet is given by

3x2 + 8xy − 3y2 = 53, z = 0, x > 0

Find the distance of closest approach to the centre of
the earth. Units are in km × 105. Illustrate your answer
with a sketch.
Suggestion: In order to avoid messy square roots, use
the method of Lagrange multipliers.

8. Use the method of Lagrange multipliers to find the
maximum and minimum values of xy + z2 on the sur-
face x2 + y2 + z2 = 1.

9. Use Lagrange multipliers to find the maximum value
of x+ y+ z on the ellipsoid x2 + 1

4
y2 + 1

9
z2 = 1. Discuss

briefly a geometrical interpretation.

10. Solve questions 2 and 5, using Lagrange multipliers as
part of your solution.

11. Let f (x, y) = x2 + y2 − 1
2
y.

(a) Use the method of Lagrange multipliers to find
the maximum and minimum points of f (x, y) on

the curve y =
√

1 − 2x2.

(b) Let R be the region bounded by the curve

y =
√

1 − 2x2 and the x-axis. Find the maximum
and minimum value of f (x, y) on the region R.

12. Find the greatest and least distance of the surface
6x2 + 4xy + 3y2 + 14z2 = 14 from the origin.

13. Use the method of Lagrange multipliers to find the
maximum and minimum values of f (x, y) = x on the
piriform curve defined by

y2 + x4 − x3 = 0

14. An open irrigation channel is to
be made in symmetric form with 3
straight sides, as drawn.

B1. An open irrigation channel is to be made in symmetric

form with 3 straight sides, as drawn. If the sum of

(given), find the channel design which will permit the












































































































Section 10.3 Optimization with Constraints 129

If the sum of the lengths of the sides of the cross-
section equals L (given), find the channel design which
will permit the maximum possible flow.

Comment: You should formulate the problem math-
ematically in the form: find the maximum value of a
function on a closed and bounded subset of R2.

15. Consider all pentagons which have a line of symmetry,
two adjacent interior angles of 900, and a perimeter of
fixed length L. Find the shape that encloses the largest
area.

16. Find the maximum and minimum value of the func-
tion f (x, y) = (x + 1)2 + y2 on the part of the graph of
y2 − x3 = 0 from (1,−1) to (1, 1).

17. * Prove that x4 + y4 − 4b2xy ≥ −2b4 for all x, y ∈ R.
18. Consider f (x, y) = (x2 + y2 + k)e−x2−y2

where k is a
constant. The properties of f depend in a significant
way on k. Analyse the function as regards local and
global maxima and minima. Sketch/describe the sur-
face z = f (x, y). How many qualitatively different
cases are there?

19. Consider a set of points (xi, yi), i = 1, 2, . . . , n, which
are close to lying on a straight line y = mx+b. In order
to find the straight line which “best fits” the points, we
minimize the sum of the squares of the errors:

E(m, b) =

n∑

i=1

[

yi − (mxi + b)
]2

In other words, we find the min-
imum value of E(m, b), for all
values of the slope m and inter-
cept b, i.e. for all (m, b) ∈ R2.

),

, i.e. for all

Apply this method to find the straight line which best
fits the points (0, 1), (2, 3), (3, 6) and (4, 8).
Suggestion: Do not expand E(m, b) before calculating
the partial derivatives.

20. * Suppose that a function f (x, y) has exactly one crit-
ical point which is a local minimum. Does f have a
minimum on R2 ? Discuss with reference to the func-
tions f1(x, y) = x2 + y2(1 − x)3 and f2(x, y) = x2 + y2.

21. * (a) Use the method of Lagrange multipliers to prove
that if x2

1 + x2
2 + x2

3 = 1, then

x2
1x2

2x2
3 ≤

1

33

(b) Hence prove that for all positive real numbers
a1, a2 and a3,

(a1a2a3)
1
3 ≤

a1 + a2 + a3

3

(c) Generalize (a) and (b) to deduce the arithmetic-

geometric mean inequality:

(a1a2 · · · an)
1
n ≤

a1 + a2 + · · · + an

n

for all positive real numbers a1, a2, . . . , an and
any positive integer n.












































































































Chapter 11

Double Integrals

11.1 Definition of the Double Integral

Recall that to find the area under a continuous curve y = f (x) over a closed interval
[a, b] we used a single integral which we defined as a limit of Riemann sums:

∫ b

a

f (x) dx = lim
n→∞

n∑

i=1

f (xi)∆xi

where ∆xi is the length of the i-th subinterval in some decomposition (i.e. partition)
of the interval [a, b] and xi is some point in the i-th subinterval.

We found that the single integral had many applications beside calculating areas un-
der curves. We can use single integrals for finding mass of thin rods, calculating
work, and for finding volumes of revolution. However, what if we want to calculate
the mass of a thin plate, or to find the volume of more complicated regions? For
these, we use double integrals.

Let D be a closed and bounded set in R2 whose boundary is a piecewise smooth
closed curve. Let f (x, y) be a function which is bounded on D, that is, there exists a
number M such that | f (x, y)| ≤ M for all (x, y) ∈ D.

Subdivide D by means of straight lines parallel to
the axes, forming a partition P of D. Label
the n rectangles that lie completely in D, in some
specific order, and denote their areas by ∆Ai,
i = 1, . . . , n. Choose a point (xi, yi) in the i-th
rectangle and form the Riemann sum

n∑

i=1

f (xi, yi)∆Ai (11.1) x

y

(xi, yi)
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Section 11.1 Definition of the Double Integral 131

DEFINITION

Integrable

Let D ⊂ R2 be closed and bounded. Let P be a partition of D as described above,
and let |∆P| denote the length of the longest side of all rectangles in the partition P.
A function f (x, y) which is bounded on D is integrable on D if all Riemann sums
approach the same value as |∆P|→ 0.

DEFINITION

Double Integral

If f (x, y) is integrable on a closed bounded set D, then we define the double integral
of f on D as

"

D

f (x, y) dA = lim
∆P→0

n∑

i=1

f (xi, yi)∆Ai

Is there any guarantee that the limiting process in the definition of the double integral
actually leads to a unique value, i.e. that the limit exists? It is possible to define
weird functions for which the limit does not exist, i.e. which are not integrable on D.
However, if f is continuous on D, it can be proved that f is integrable on D, that is
the double integral of f does exist. Functions which are discontinuous on D may be
integrable on D. For example, if f is continuous in D except at points which lie on a
curve C ( f is piece-wise continuous), then f is integrable. The proofs of these results
are beyond the scope of this course.

Interpretation of the Double Integral

When you encounter the double integral symbol

"

D

f (x, y) dA

think of “limit of a sum”. In itself, the double integral is a mathematically defined
object. It has many interpretations depending on the meaning that you assign to the
integrand f (x, y). The “dA” in the double integral symbol should remind you of the
area of a rectangle in a partition of D.

Double Integral as Area:

The simplest interpretation is when you specialize f to be the constant function with
value unity:

f (x, y) = 1, for all (x, y) ∈ D

Then the Riemann sum (14.1) simply sums the areas of all rectangles in D, and the
double integral serves to define the area A(D) of the set D:

A(D) =

"

D

1 dA












































































































132 Chapter 11 Double Integrals

Double Integral as Volume:

If f (x, y) ≥ 0 for all (x, y) ∈ D, then the double integral

"

D

f (x, y) dA

can be interpreted as the volume V(S ) of the region defined by

S =
{

(x, y, z) | 0 ≤ z ≤ f (x, y), (x, y) ∈ D
}

which represents the solid below the surface z = f (x, y) and above the set D in the
xy-plane. The justification is as follows.

The partition P of D decomposes the solid S into
vertical “columns”. The height of the column
above the i-th rectangle is approximately f (xi, yi),
and so its volume is approximately

f (xi, yi)∆Ai

The Riemann sum (14.1) thus approximates the
volume V(S ):

V(S ) ≈
n∑

i=1

f (xi, yi)∆Ai

As |∆P| → 0 the partition becomes increasingly fine, so the error in the approxima-
tion will tend to zero. Thus, the volume V(S ) is

V(S ) =

"

D

f (x, y) dA

Double Integral as Mass:

Think of a thin flat plate of metal whose density varies with position. Since the plate
is thin, it is reasonable to describe the varying density by an “area density”, that is a
function f (x, y) that gives the mass per unit area at position (x, y). In other words, the
mass of a small rectangle of area ∆Ai located at position (xi, yi) will be approximately

∆Mi ≈ f (xi, yi)∆Ai

The Riemann sum (14.1) corresponding to a partition P of D will approximate the
total mass M of the plate D, and the double integral of f over D, being the limit of
the sum, will represent the total mass:

M =

"

D

f (x, y) dA
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Double Integral as Probability:

Let f (x, y) be the probability density of a continuous 2-D random variable (X,Y).
The probability that (X,Y) ∈ D, a given subset of R2, is

P((X,Y) ∈ D) =
#

D

f (x, y) dA

Average Value of a Function:

The double integral is also used to define the average value of a function f (x, y) over
a set D ⊂ R2.

Recall for a function of one variable, f (x), the average value of f over an interval
[a, b], denoted fav, is defined by

fav =
1

b−a

∫ b

a
f (x) dx

Similarly, for a function of two variables f (x, y), we can define the average value of
f over a closed and bounded subset D of R2 by

fav =
1

A(D)

#

D

f (x, y) dA

EXERCISE 1 A city occupies a region D of the xy-plane. The population density in the city (mea-
sured as people/unit area) depends on position (x, y), and is given by a function
p(x, y). Interpret the double integral

#

D

p(x, y) dA.

Properties of the Double Integral

The basic properties of single integrals can be generalized to double integrals. We
do not give the proofs, but we point out that the results are plausible if one thinks in
terms of Riemann sums.

THEOREM 1 (Linearity)

If D ⊂ R2 is a closed and bounded set and f and g are two integrable functions on D,
then for any constant c:

"

D

( f + g) dA =

"

D

f dA +

"

D

g dA

"

D

c f dA = c

"

D

f dA












































































































134 Chapter 11 Double Integrals

THEOREM 2 (Basic Inequality)

If D ⊂ R2 is a closed and bounded set and f and g are two integrable functions on D
such that f (x, y) ≤ g(x, y) for all (x, y) ∈ D, then

"

D

f dA ≤
"

D

g dA

THEOREM 3 (Absolute Value Inequality)

If D ⊂ R2 is a closed and bounded set and f is an integrable function on D, then

∣
∣
∣
∣
∣
∣
∣
∣

"

D

f dA

∣
∣
∣
∣
∣
∣
∣
∣

≤
"

D

| f | dA

THEOREM 4 (Decomposition)

Assume D ⊂ R2 is a closed and bounded set and f is an integrable function on

D. If D is decomposed into two closed and bounded
subsets D1 and D2 by a piecewise smooth curve C,
then

"

D

f dA =

"

D1

f dA +

"

D2

f dA
D1

D2

C

D = D1 ∪ D2

REMARKS

1. The Basic Inequality can be used to obtain an estimate for a double integral
that cannot be evaluated exactly.

2. The decomposition property is essential for dealing with complicated regions
of integration and with discontinuous integrands.












































































































Section 11.2 Iterated Integrals 135

11.2 Iterated Integrals

It is clear that double integrals can be evaluated approximately by using a computer to
evaluate a suitable Riemann sum. The accuracy would depend on how fine a partition
you choose. But it is natural to ask: is it possible to calculate double integrals exactly,
using methods that work for single integrals? For sufficiently simple functions and
regions of integration, the answer is YES. The idea is to write the double integral as
a succession of two single integrals, called an iterated integral. We will derive a
method for doing this by using the interpretation of the double integral as volume.

Let D be a region in the xy-plane and let f be a function such that f (x, y) ≥ 0 for
all (x, y) ∈ D. If V denotes the volume of the solid above D and below the surface
z = f (x, y), then we have

V =

"

D

f (x, y) dA

Assume that the region D lies between vertical lines
x = x* and x = xu with x* < xu and has top curve
y = yu(x) and bottom curve y = y*(x). That is, D is
described by the inequalities

y*(x) ≤ y ≤ yu(x), and x* ≤ x ≤ xu

x

y

D

y = yu(x)

y = yl(x)

xuxl

Now, recall from Calculus 2 that we can find a volume of a region by integrating over
all possible cross-sectional areas. That is,

V =

∫ xu

x*

A(x) dx

where A(x) is the cross-sectional area of the solid for any fixed value of x. But, we
know that the cross-sectional area A(x) is the area under the cross-section z = f (x, y),
and thus is given by a single integral

A(x) =

∫ yu(x)

y*(x)

f (x, y) dy

Hence, the volume of the region is

V =

∫ xu

x*

(∫ yu(x)

y*(x)

f (x, y) dy

)

dx

Thus, we have

"

D

f (x, y) dA =

∫ xu

x*

∫ yu(x)

y*(x)

f (x, y) dy dx

as desired.












































































































136 Chapter 11 Double Integrals

THEOREM 1 Let D ⊂ R2 be defined by

y*(x) ≤ y ≤ yu(x), and x* ≤ x ≤ xu

where y*(x) and yu(x) are continuous for x* ≤ x ≤ xu. If f (x, y) is continuous on D,
then

"

D

f (x, y) dA =

∫ xu

x*

∫ yu(x)

y*(x)

f (x, y) dy dx

The proof is beyond the scope of this course.

REMARK

Although the parentheses around the inner integral are usually omitted, we must
evaluate it first. Moreover, as in our interpretation of volume above, when evaluating
the inner integral, we are integrating with respect to y while holding x constant. That
is, we are using partial integration.

EXAMPLE 1 Evaluate
"

D

xy dA

where D is the triangular region with vertices (0, 0), (2, 0), and (0, 1).

Solution: The set D is defined by

0 ≤ y ≤ 1 −
1

2
x, and 0 ≤ x ≤ 2

"

D

xy dA =

2∫

x=0

1− 1
2 x

∫

y=0

xy dy dx

=

∫ 2

x=0

x

(

1

2
y2

) ∣
∣
∣
∣
∣
∣

1− 1
2 x

0

dx

=
1

2

∫ 2

0

x

(

1 −
1

2
x

)2

dx

=
1

4
x2 −

1

6
x3 +

1

32
x4

∣
∣
∣
∣
∣
∣

2

0

=
1

6

x

y

(0, 0) (2, 0)

(0, 1)

D

yl = 0

yu = 1 − 1
2
xx + 2y = 2
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Suppose now that the set D can be described
by inequalities of the form

x*(y) ≤ x ≤ xu(y), and y* ≤ y ≤ yu

where y*, yu are constants and x*(y), xu(y) are
continuous functions of y on the interval

y* ≤ y ≤ yu

x

y

D

yu

yl

x = xu(y)

x = xl(y)

Then, by reversing the roles of x and y in Theorem 1, the double integral

"

D

f (x, y) dA

can be written as an iterated integral in the order “x first, then y”:
"

D

f (x, y) dA =

∫ yu

y*

∫ xu(y)

x*(y)

f (x, y) dx dy (11.2)

EXAMPLE 2 Evaluate the integral in Example 1 by integrating with respect to x first.

Solution: In order to integrate with respect to x first, we describe the set D by
0 ≤ x ≤ 2(1 − y), 0 ≤ y ≤ 1. So, by equation (11.2) we get

"

D

xy dA =

∫ 1

y=0

∫ 2(1−y)

x=0

xy dx dy

=

∫ 1

y=0

y

(

1

2
x2

) ∣
∣
∣
∣
∣
∣

2(1−y)

0

dy

= 2

∫ 1

0

y(1 − y)2 dy =
1

6
x

y

(0, 0) (2, 0)

(0, 1)

D
xl = 0 xu = 2 − 2y

x + 2y = 2

EXAMPLE 3 Let D be the region bounded by y = x2 and y = x + 2. Evaluate

"

D

(x + 2y) dA.

Solution: From the diagram, we observe that the region can be written as
x2 ≤ y ≤ x + 2 with −1 ≤ x ≤ 2. Thus,

"

D

(x + 2y) dA =

∫ 2

−1

∫ x+2

x2

x + 2y dy dx

=

∫ 2

−1

[

xy + y2
]x+2

x2
dx

=

∫ 2

−1

(2x2 + 6x + 4 − x3 − x4) dx

=
333

20

x

y

(0, 0)

(2, 4)

(−1, 1)
D

yl = x2

yu = x + 2












































































































138 Chapter 11 Double Integrals

EXAMPLE 4 Let D be the region bounded by the lines y = 0, x = 1, and y = x. Find

"

D

ex2

dA.

Solution: Although we can easily write the region so that we could integrate with
respect either variable first, we see that choosing to integrate with respect to x first
would be a bad choice since there is no known anti-derivative of ex2

. Thus, we write
the region as 0 ≤ y ≤ x, 0 ≤ x ≤ 1. Then, we get

"

D

ex2

dA =

∫ 1

0

∫ x

0

ex2

dy dx

=

∫ 1

0

yex2

∣
∣
∣
∣
∣
∣

x

0

dx

=

∫ 1

0

xex2

dx

=
1

2
(e − 1)

x

y

(0, 0) (1, 0)

(1, 1)

D

yl = 0

yu = x

EXAMPLE 5 Find the volume of the solid S in the first octant (x ≥ 0, y ≥ 0, z ≥ 0) bounded by the
cylinder y2 + z2 = 16, and the planes 3y − 2x = 0, x = 0, z = 0.

Solution: The cylinder y2 + z2 = 16 runs parallel to the x-axis (since there is no
x-dependence). The plane 3y − 2x = 0 is vertical (since there is no z-dependence).
The solid is described by

0 ≤ z ≤
√

16 − y2 and (x, y) ∈ D

where D is the region in the xy-plane bounded by 3y − 2x = 0, x = 0, and y = 4.

x

x

y

y

z

xl = 0

xu =
3y
2

0

D

D

y = 4

y = 4

3y − 2x = 0
3y − 2x = 0

y2 + z2 = 16

Hence, the volume of the solid is
"

D

√

16 − y2 dA
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Observe that we can represent the set D as 0 ≤ x ≤
3y

2
, and 0 ≤ y ≤ 4. Thus, the

volume is

"

D

√

16 − y2 dA =

∫ 4

0

∫ 3y/2

0

√

16 − y2 dx dy

=

∫ 4

0

√

16 − y2(x)

∣
∣
∣
∣
∣

3y/2

0

dy

=

∫ 4

0

3

2
y
√

16 − y2 dy

= −
1

2
(16 − y2)3/2

∣
∣
∣
∣
∣

4

0

= 32 cubic units.

Observe that the region in Example 5 could have also been represented by 2x
3
≤ y ≤ 4,

0 ≤ x ≤ 6. Hence, we could have applied Theorem 1, instead of using equation
(11.2). However, notice that if we had applied Theorem 1 instead, our inner integral
would have been

∫ 4

2x/3

√

16 − y2 dy

which would have been more difficult. Thus, when evaluating a double integral

"

D

f (x, y) dA

one must take into account two factors:

• the shape of the region D.

• the form of the integrand f (x, y).

Either of these factors may make it desirable or even essential to use one order of
integration instead of the other.

EXERCISE 1 Describe the set D by inequalities in two ways.
Evaluate the double integral

"

D

(x + y) dA

in two ways.

x

y

D

x = 4 − y2

(0, 2)

(0,−2)

(4, 0)
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EXERCISE 2 Let D be the triangular region with vertices (0, 0), (1, 1), and (0, 2). Evaluate

"

D

y dA

EXERCISE 3 Let D be the triangular region with vertices (0, 0), (0, 1), and (1, 1). Evaluate

"

D

e−y2

dA

EXERCISE 4 Find the volume of the solid bounded above by the paraboloid z = 4 − x2 − y2, and
below by the rectangle D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

For more complicated regions we may not be able to
apply our method above so easily. For example an
annulus cannot be described by the usual inequalities
since a vertical or a horizontal line may intersect the
boundary of D in more than two points. A simple
approach to evaluating the double integral

"

D

f (x, y) dA

x

y

annulus

R1

R2

where D is the annulus is to let D1,D2 denote the discs of radius R1 and R2 respec-
tively. Then, by the Decomposition Theorem,

"

D2

f (x, y) dA =

"

D1

f (x, y) dA +

"

D

f (x, y) dA

and so the required integral is

"

D

f (x, y) dA =

"

D2

f (x, y) dA −
"

D1

f (x, y) dA

Both integrals on the right can be written as iterated integrals in the usual way. How-
ever, for this or even more complicated regions, we can often make it simpler by
applying a change of variables.
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11.3 Change of Variables

In single variable calculus, we learn how a change of variables x = g(u) can be used
to transform the integral

∫ b

a

f (x) dx

into the integral
∫ d

c

f (g(u))g′(u) du

(where c and d are such that g(c) = a and g(c) = d) which can sometimes be simpler
and easier to evaluate. The change of variables x = g(u) here is technically a func-
tion g defined on a suitable domain in R and subject to certain differentiability and
continuity conditions.

We would like to execute a similar process for double integrals. In place of the change
of variables x = g(u), what we would like is a mapping G given by

(x, y) = G(u, v)

whose domain is a subset of R2. Such a mapping can simplify the double integral

"

Dxy

f (x, y) dA

either by changing the integrand f (x, y), or by deforming the set Dxy in the xy-plane
into a simpler shape Duv in the uv-plan (or both).

What remains is to determine the effect of the mapping G on “dA”. In the single
variable case, the analogous effect is captured by the derivative g′(u), and is usually
expressed informally as

x = g(u), dx = g′(u) du

In order to determine the appropriate multivariable analogue, we shall begin by un-
dertaking a study of mappings from R2 to R2 in the next chapter.

Chapter 11 Problem Set

1. Show that

"

D

(ax + by) dx dy =
1

3
(a + b), where D is

the region in the first quadrant bounded by the circle
x2 + y2 = 1 and the lines x = 0, y = 0; a, b are con-
stants.

2. Find the volume of the solid with height h(x, y) = xy

and base D where D is bounded by y = 1
2

x, y =
√

x,
x = 2 and x = 4.

3. Find the volume of the solid with height h(x, y) = 1+xy

and base D where D is bounded by y = x and y = x2.

4. Evaluate

"

D

sin(x+y) dx dy, where D is the triangular

region with vertices (0, 0), (π, 0) and
(π

2
,
π

2

)

.

5. Evaluate the following integrals.

(a)

"

D

xy2 dA where D is the region bounded by

y = x, y = 2x and x = 3.

(b)

∫ 1

0

∫ 1

x

y

√

1 − y3 dy dx.
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6. Evaluate

"

D

e−y2

dx dy, where D is the triangular re-

gion with vertices (0, 0), (0, 1) and (1, 1).

7. For the following iterated integrals sketch the region of
integration, and evaluate the integrals by reversing the
order of integration:

(a)

1∫

0





1∫

x=y

sin(x2) dx





dy (b)

∫ 1

0





∫ √
x

y=x

sin y

y
dy




dx

8. Prove that

"

D

sin2(x+y) dA ≤
"

D

sin(x+y) dA where

D = {(x, y) | 0 ≤ x + y ≤ π and 0 ≤ y ≤ π}.

9. Let V denote the volume of the tetrahedron with
vertices (a, 0, 0), (0, b, 0), (0, 0, c) and (0, 0, 0), with
a, b, c > 0. Show that V = 1

6
abc.

10. Let D be the quarter disc in the first quadrant defined
by x2 + y2 ≤ 1. Use the inequality

x −
1

6
x3 ≤ sin x ≤ x, for x ≥ 0

to show that

14

45
≤

"

D

sin x dA ≤
15

45

Note: You will not succeed in evaluating this integral
exactly.

11. Let D be the unit square 0 ≤ x ≤ 1, b ≤ y ≤ b + 1.
Show that

"

D

xy dA = ln

(

b + 2

b + 1

)

12. The temperature at points of the disc
x2 + y2 ≤ b2 is given by

f (x, y) = 100 + x3 − 3xy2

Find the average temperature. At what points of the
disc does the temperature equal the average tempera-
ture? Give a sketch.

13. Evaluate the iterated integral

e∫

1





ln x∫

y=0

y

x
dy





dx.

14. Evaluate

"

D

e−|x+y| dA, where

D = {(x, y) | |x| ≤ 1, |y| ≤ 1}.

15. Evaluate (i)

"

D

xy dA, (ii)

"

D

sin x dA, where D

is the unit disc centered at the origin. Hint: Don’t do
much work.












































































































Chapter 12

Mappings of R2 into R2

So far we have studied scalar-valued functions, that is, functions which map a subset
ofR2, or more generally, a subset ofRn intoR. We now extend the ideas of differential
calculus to more general functions.

DEFINITION

Vector-Valued
Function

A function whose domain is a subset of Rn and whose codomain is Rm is called a
vector-valued function.

You have already worked with the simplest type of vector-valued functions. Consider
parametric equations x = f (t), y = g(t) for a curve in R2: These two scalar equations
can be written as a vector equation:

(x, y) = F(t) = ( f (t), g(t))

x

y

t

ta b

F

F(t)

F(a)

F(b)

The function F maps t to F(t), so the domain of F is a subset of R and its codomain
is R2. Consequently, F is a vector-valued function.

REMARK

While we represent ( f (t), g(t)) as a point in R2, remember that it can also be thought
of as a position vector.
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DEFINITION

Mapping

A vector-valued function whose domain is a subset of Rn and whose codomain is a
subset of Rn is called a mapping (or transformation).

We shall find that linear algebra plays an important role here.

12.1 The Geometry of Mappings

A pair of equations

u = f (x, y)

v = g(x, y)

associates with each point (x, y) ∈ R2 a single point (u, v) ∈ R2, and thus defines a
vector-valued function

(u, v) = F(x, y) = ( f (x, y), g(x, y))

The scalar functions f and g are called the component functions of the mapping.
Mappings of R2 into R2 (more generally Rn into Rn) have many applications, such
as defining curvilinear coordinate systems (e.g. polar coordinates), and performing
a change of variables in multiple integrals (see Sections 13.4 and 14.3). They are
used in applied mathematics, in statistics, and in computer graphics for simplifying
problems in two or more variables.

In general, if a mapping F from R2 to R2

acts on a curve C in its domain, it will de-
termine a curve in its range, denoted by
F(C) and called the image of C under F.

x

y

u

v

F

curve C
image F(C)

More generally, if a mapping F from R2

to R2 acts on any subset S in its domain
it will determine a set F(S ) in its range,
called the image of S under F.

x

y

u

v

F

set S

image F(S )

In order to develop an intuitive geometric understanding of a mapping it is helpful to
determine the images of different curves and sets under the mapping. In general, a
mapping will deform a given curve or set.
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EXAMPLE 1 Consider the mapping defined by (u, v) = F(x, y) =

(

1

2
(x + y),

1

2
(−x + y)

)

.

(a) Find the images of the lines x = k and y = * under F.

Solution: We are given that u =
1

2
(x + y) and v =

1

2
(−x + y). We need to use these

equations to convert the equations x = k and y = * in terms of u and v.

One way we can do this is to first solve for x and y in terms of u and v.

Observe that we have
x = u − v and y = u + v

Thus, a line x = k under the mapping becomes

u − v = k

Similarly, a line y = * is transformed into

u + v = *

(b) Find the image of the square S = {(x, y) | |x| ≤ 1, |y| ≤ 1} under F.

Solution: To determine the image of S under F, we find the image of each of the
boundary lines. In particular, by choosing k = ±1 and * = ±1, we obtain the images
of the sides of the square S .

x

y

u

v

F

x = 1x = −1

y = 1

y = −1
u + v = 1

u + v = −1

u − v = 1

u − v = −1

Observe that the mapping in Example 1 is linear. For any linear mapping, the image
of a straight line in the xy-plane is a straight line in the uv-plane. However, we see
from the image of S under F that the lines are contracted and rotated by F.

EXERCISE 1 Find the image of the circle (x − 1)2 + y2 = 1 under the mapping F defined in
Example 1.
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EXAMPLE 2 Find the image of D = {(x, y) | −1 ≤ x ≤ 3, 0 ≤ y ≤ 2}} under the mapping

(u, v) = T (x, y) = (x2 − y2, xy)

Solution: To determine the image of D under T , we find the image of each of the
boundary lines. In this case, it is not so easy to solve for x and y in terms of u and v.
We instead substitute the equation of each line directly into the mapping.

For the line x = −1, 0 ≤ y ≤ 2, we get

u = (−1)2 − y2 = 1 − y2

v = (−1)y = −y

We want equations of curves in the uv-plane, so we eliminate y to obtain

u = 1 − (−v)2 = 1 − v2

Since v = −y, the condition 0 ≤ y ≤ 2 gives

0 ≤ −v ≤ 2⇒ −2 ≤ v ≤ 0

For the line x = 3, 0 ≤ y ≤ 2, we get v = 3y, so

u = (3)2 − y2 = 9 − y2 = 9 −
(

1

3
v

)2

= 9 −
1

9
v2

with

0 ≤
1

3
v ≤ 2⇒ 0 ≤ v ≤ 6

For the line y = 2, −1 ≤ x ≤ 3, we get v = 2x, so

u = x2 − 22 = x2 − 4 =
1

4
v2 − 4, −2 ≤ v ≤ 6

For the line y = 0, −1 ≤ x ≤ 3, we get v = 0 and

u = x2 − 02 = x2

Since x runs from −1 to 3 and u = x2, we get that u starts at 1 (when x = −1), moves
to u = 0 (when x = 0) and then u moves from 0 to 9 (as x changes from 0 to 3).

x

y

u

v

(9, 0)

(5, 6)

(−3,−2)

(1, 0)(0, 0)

T

x = 3x = −1

y = 2

y = 0

u = 1 − v2

u = 9 − 1
9
v2

u = 1
4
v2 − 4

v = 0
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EXAMPLE 3 Find the image of the rectangle

R =
{

(r, θ) | 1 ≤ r ≤ 2,
π

4
≤ θ ≤

3π

4

}

under the mapping from polar coordinates to Cartesian coordinates defined by

(x, y) = F(r, θ) = (r cos θ, r sin θ)

[Refer to Appendix B for an introduction to polar coordinates.]

Solution: To find the image of the rectangle, we will find the image of each of the
boundary lines under F. For the line r = 1, π

4
≤ θ ≤ 3π

4
we get

x = cos θ, y = sin θ

for π
4
≤ θ ≤ 3π

4
. In this case, we don’t need to eliminate θ since we recognize these

are parametric equations of a circle of radius 1, since they imply

x2 + y2 = 1

Thus, the image is the part of the unit circle with π
4
≤ θ ≤ 3π

4
.

Similarly, we see that the line r = 2, π
4
≤ θ ≤ 3π

4
gives the part of the circle of radius

2 for which π
4
≤ θ ≤ 3π

4
.

The image of a line θ = π
4
, 1 ≤ r ≤ 2 is

x = r cos
π

4
=

1
√

2
r, y = r sin

π

4
=

1
√

2
r

for 1 ≤ r ≤ 2. Eliminating r gives y = x. Moreover, we have that r =
√

2x and hence
1 ≤ r ≤ 2 gives that x has values from

1 ≤
√

2x ≤ 2⇒
1
√

2
≤ x ≤

√
2

Similarly, for the line θ = 3π
4

, 1 ≤ r ≤ 2 we get

x = r cos
3π

4
= −

1
√

2
r, y = r sin

3π

4
=

1
√

2
r

for 1 ≤ r ≤ 2. Thus, the image is the line y = −x with x values −
√

2 ≤ x ≤ − 1√
2
.

x

y

r

θ

F

1 2

π
4

3π
4

x2 + y2 = 1x2 + y2 = 4

y = xy = −x
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REMARKS

1. Observe that each of the images are exactly what we would get if we sketched
the equations as in Appendix B.

2. The mapping from polar coordinates to Cartesian coordinates is non-linear.
The image of a straight line is not necessarily a straight line.

EXERCISE 2 Find the image of the square

S = {(x, y) | 1 ≤ x ≤ 2, 2 ≤ y ≤ 3}

under the mapping defined by

(u, v) = F(x, y) = (xy, y)

12.2 The Linear Approximation of a Mapping

Consider a mapping F defined by u = f (x, y), v = g(x, y). We assume that F has
continuous partial derivatives. By this we mean that the component functions f and
g have continuous partial derivatives.

The image of a point (a, b) in the xy-plane is the point (c, d) in the uv-plane, where

c = f (a, b), d = g(a, b)

As usual, we want to approximate the image (c + ∆u, d + ∆v) of a nearby point
(a + ∆x, b + ∆y).

x

y

u

v

F

F

(a, b)

(a + ∆x, b + ∆y)

(c, d)

(c + ∆u, d + ∆v)
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We do this by using the linear approximation for f (x, y) and g(x, y) separately. We
get

∆u ≈
∂ f

∂x
(a, b)∆x +

∂ f

∂y
(a, b)∆y

∆v ≈
∂g

∂x
(a, b)∆x +

∂g

∂y
(a, b)∆y

for ∆x and ∆y sufficiently small. This can be written in matrix form as:

[

∆u
∆v

]

≈





∂ f

∂x
(a, b) ∂ f

∂y
(a, b)

∂g
∂x

(a, b) ∂g
∂y

(a, b)





[

∆x
∆y

]

where the product on the right side of the equation is matrix multiplication.

Observe that this resembles our usual form of the linear approximation where the
2 × 2 matrix is taking the place of the “derivative”. Thus, we make the following
definition.

DEFINITION

Derivative Matrix

The derivative matrix of a mapping defined by

F(x, y) = ( f (x, y), g(x, y))

is denoted DF and defined by

DF =





∂ f

∂x
∂ f

∂y
∂g
∂x

∂g
∂y





EXAMPLE 1 Find the derivative matrix of the mapping

(u, v) = F(x, y) = (x2 sin y, y2 cos x)

Solution: We have f (x, y) = x2 sin y and g(x, y) = y2 cos x. So,

DF(x, y) =





∂ f

∂x
∂ f

∂y
∂g
∂x

∂g
∂y





=

[

2x sin y x2 cos y
−y2 sin x 2y cos x

]

If we introduce the column vectors

∆u =

[

∆u
∆v

]

, ∆x =

[

∆x
∆y

]
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then the increment form of the linear approximation for mappings becomes

∆u ≈ DF(a, b)∆x

for ∆x sufficiently small. Thus, the linear approximation for mappings is

F(x, y) ≈ F(a, b) + DF(a, b)∆x

The geometrical interpretation of the linear approximation for mappings is this: the
derivative matrix DF(a, b) acts as a linear mapping on the displacement vector ∆x to
give an approximation of the image ∆u of the displacement under F.

x

y

u

v

(a, b)

F

F(a, b)

DF(a, b)∆x

∆x

∆u

EXAMPLE 2 Consider the mapping defined by

(u, v) = F(x, y) =
(

−x +
√

x2 + y2, x +
√

x2 + y2
)

Use the linear approximation to estimate the image of the point (3.02, 3.99) under F.

Solution: The derivative matrix of F is

DF(x, y) =





−1 + x√
x2+y2

y√
x2+y2

1 + x√
x2+y2

y√
x2+y2





As a reference point choose (3, 4). Then F(3, 4) = (2, 8) and

DF(3, 4) =

[

− 2
5

4
5

8
5

4
5

]

The displacement in the uv-plane is approximated by

[

∆u
∆v

]

≈ DF(3, 4)

[

∆x
∆y

]

=

[

− 2
5

4
5

8
5

4
5

] [

0.02
−0.01

]

=

[

−0.016
0.024

]

Thus, the linear approximation gives

F(3.02, 3.99) ≈ (2, 8) + (−0.016, 0.024) = (1.984, 8.024)

Note: The calculator value is (1.98405, 8.02405).
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EXERCISE 1 Consider the mapping defined by

(u, v) = F(x, y) =
(

ln(x + y), ln(x − y)
)

Approximate the image of the point (0.95, 0.1) under F.

Generalization

A mapping F from Rn to Rm is defined by a set of m component functions:

u1 = f1(x1, . . . , xn)

...

um = fm(x1, . . . , xn)

Or, in vector notation

u = F(x) = ( f1(x), · · · fm(x)), x ∈ Rn

If we assume that F has continuous partial derivatives, then the derivative matrix of
F is the m × n matrix defined by

DF(x) =





∂ f1
∂x1
· · · ∂ f1

∂xn

...
...

∂ fm
∂x1
· · · ∂ fm

∂xn





As expected, the linear approximation for F at a is

F(x) ≈ F(a) + DF(a)∆x

where

∆u =





∆u1
...
∆um





∈ Rm, ∆x =





∆x1
...
∆xn





∈ Rn

12.3 Composite Mappings and the Chain Rule

The next step in developing the theory of mappings is to study the composition of
two mappings.
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Consider successive mappings F and G of R2 into R2, defined by

F :

{

p = p(u, v)
q = q(u, v)

G :

{

u = u(x, y)
v = v(x, y)

(12.1)

x

y

u

v

p

q

FG

F ◦G

The composite mapping F ◦G, defined by






p = p
(

u(x, y), v(x, y)
)

q = q
(

u(x, y), v(x, y)
) (12.2)

maps the xy-plane directly into the pq-plane.

The question is this: how is the derivative matrix D(F ◦G) of the composite mapping
related to the derivative matrices DF and DG of the individual mappings?

The answer is: D(F ◦G)(x, y) is the matrix product of DF(u, v) and DG(x, y), where
(u, v) = G(x, y).

We state this formally in the following theorem.

THEOREM 1 (Chain Rule in Matrix Form)

Let F and G be mappings from R2 to R2. If G has continuous partial derivatives at
(x, y) and F has continuous partial derivatives at (u, v) = G(x, y), then the composite
mapping F ◦G has continuous partial derivatives at (x, y) and

D(F ◦G)(x, y) = DF(u, v)DG(x, y)

Proof: Define the component functions for F, G, and F ◦ G as in equations (12.1)
and (12.2). Then, the chain rule for scalar functions gives

DF(u, v)DG(x, y) =

[∂p

∂u
∂p

∂v
∂q
∂u

∂q
∂v

] [∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]

=





∂p

∂u
∂u
∂x
+
∂p

∂v
∂v
∂x

∂p

∂u
∂u
∂y
+
∂p

∂v
∂v
∂y

∂q
∂u
∂u
∂x
+
∂q
∂v
∂v
∂x

∂q
∂u
∂u
∂y
+
∂q
∂v
∂v
∂y





=





∂p

∂x
∂p

∂y
∂q
∂x

∂q
∂y





= D(F ◦G)(x, y)

as required. !
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EXAMPLE 1 Consider the mappings G and F defined by

(u, v) = G(x, y) = (xy, x + y)

(p, q) = F(u, v) = (u − v, u2)

Form the composite mapping F ◦ G and find the derivative matrices DG, DF, and
D(F ◦G). Verify the Chain Rule formula.

Solution: The composite mapping is

(p, q) = F(G(x, y)) = F(xy, x + y) = (xy − x − y, x2y2)

The derivative matrices are:

DG(x, y) =

[

y x
1 1

]

, DF(u, v) =

[

1 −1
2u 0

]

, D(F ◦G)(x, y) =

[

y − 1 x − 1
2xy2 2x2y

]

Form the matrix product,

DF(u, v)DG(x, y) =

[

1 −1
2u 0

] [

y x
1 1

]

=

[

y − 1 x − 1
2uy 2ux

]

=

[

y − 1 x − 1
2xy2 2x2y

]

, on substituting u = xy

= D(F ◦G)(x, y), as required.

EXERCISE 1 Consider the mappings defined by

F(u, v) = (u2v, euv−1), G(x, y) =
( √

2x2 + 2y2, 2x + y2
)

(a) Use the chain rule in matrix form to find the derivative matrix D(F ◦G).
(b) Calculate D(G ◦ F)(1, 1).
(c) Use the linear approximation of mappings to approximate the image of

(u, v) = (1.01, 0.98) under G ◦ F.
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Chapter 12 Problem Set

1. Consider the following maps. Find the image under T

of the square

D = {(x, y) | 1 ≤ x ≤ 2, 2 ≤ y ≤ 3}

(a) T (x, y) = (2x + 3y, x − y)

(b) T (x, y) = (xy, x2 − y2)

(c) T (x, y) = (x cos 1
3
πy, x sin 1

3
πy)

(d) T (x, y) = (ex+y, ex−y)

2. Consider (u, v) = F(x, y) = (y + ex, ex − y).

(a) Find and sketch the image of the square with ver-
tices (0, 0), (0, 1), (1, 1), and (1, 0) under F.

(b) Use the linear approximation for mappings to ap-
proximate the image of (x, y) = (0.01, 0.02) un-
der F.

3. Find the image of D = {(x, y) ∈ R2| − 1 ≤ x ≤ 2, 0 ≤
y ≤ 2} under T (x, y) = (x + 2y, 3x − y).

4. Find the image of D = {(x, y) ∈ R2|1 ≤ x ≤ 2, 0 ≤ y ≤
2} under T (x, y) = (x2 + y2, x2 − y2).

5. Find the image of the annulus 4 ≤ x2 + y2 ≤ 16 under
the map defined by

(u, v) = F(x, y) =

(

x

x2 + y2
,

y

x2 + y2

)

6. Use the linear approximation in matrix form to find
the approximate image of the point (3.1, 3.9) under the
map defined by

(u, v) = F(x, y) =





√

x2 + y2,
x

√

x2 + y2





7. Let (p, q) = F(u, v) =
(

v cos(uv + 2), v
√

u2 + 5
)

and

(u, v) = G(x, y) = (xy − xy2, xexy−2).

(a) Use the chain rule in matrix form to find
D(F ◦G)(1, 2).

(b) Use the linear approximation for mappings to ap-
proximate the image of (x, y) = (1.1, 1.9) under
F ◦G.

8. Consider the maps F and G defined by

F(u, v) = (eu+v, eu−v), G(x, y) = (xy, x2 − y2)

(a) Calculate the composite map F◦G and the deriva-
tive matrix D(F ◦G)(1, 1).

(b) Verify your answer for D(F ◦ G)(1, 1) by using
the Chain Rule in matrix form.

(c) Calculate D(G ◦ F)(1, 1).

9. Consider the maps F and G defined by

F(u, v) = (v + u2, u), G(x, y) = (exy, 2e−xy)

State the Chain Rule in matrix form, and use it to cal-
culate the derivative D(F ◦ G)(0, 1) of the composite
map.

10. Let (u, v) = F(x, y) =
(

x ln(y − x4), (2 + y
x
)3/2

)

. Sup-
pose that G(u, v) has continuous partial derivatives with

G(0, 8) = (1,−1) and DG(0, 8) =

[

−2 1
−4 3

]

. Use the lin-

ear approximation to approximate (G ◦ F)(0.9, 2.1).

11. (a) Let (u, v) = F(x, y) be a map of the xy-plane into
the uv-plane. Consider a smooth curve (x(t), y(t))
in the xy-plane. Suppose that F maps this curve
into the curve (u(t), v(t)) in the uv-plane. Show
that the tangent vectors are related by the deriva-
tive matrix according to

[

u′(t)
v′(t)

]

= DF(x(t), y(t))

[

x′(t)
y′(t)

]

(b) Consider the map (u, v) = (xy, x2 − y2). Find the
image of the curve (x, y) = (t, t2), t ≥ 0 under this
map, and sketch both curves. Calculate the tan-
gent vectors to the curves, and verify the formula
that you derived in part (a).

12. * Sketch the image of the square

D = {(x, y) | 1 ≤ x ≤ 2, 2 ≤ y ≤ 3}

under the map

T (x, y) =
(

x cos
(π

3
xy

)

, x sin
(π

3
xy

))



Chapter 13

Jacobians and the Change of

Variables Theorem

13.1 The Inverse Mapping Theorem

Our goal now is to find a condition which will guarantee that a mapping (u, v) =
F(x, y) has an inverse. We start by defining inverse mappings in the expected way.

DEFINITION

Invertible
Mapping

Inverse Mapping

Let F be a mapping from a set Dxy onto a set Duv. If there exists a mapping F−1,
called the inverse of F which maps Duv onto Dxy such that

(x, y) = F−1(u, v) if and only if (u, v) = F(x, y)

then F is said to be invertible on Dxy.

As usual, we have

(F−1 ◦ F)(x, y) = (x, y) for all (x, y) ∈ Dxy (13.1)

(F ◦ F−1)(u, v) = (u, v) for all (u, v) ∈ Duv

Recall that a function being invertible is related to it being one-to-one.

DEFINITION

One-to-One

A mapping F from R2 to R2 is said to be one-to-one on a set Dxy if and only if
F(a, b) = F(c, d) implies (a, b) = (c, d), for all (a, b), (c, d) ∈ Dxy.

(x1, y1)

(x2, y2)

(u1, v1)

(u2, v2)

(x1, y1)

(x2, y2)

(u1, v1) = (u2, v2)

F

F

F

F

Dxy
Dxy

Duv
Duv

F is one-to-one F is not one-to-one

155
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THEOREM 1 Let F be a mapping from a set Dxy onto a set Duv. If F is one-to-one on Dxy, then F
is invertible on Dxy.

Now, recall from Calculus 1 that if f ′(x) > 0 for all x ∈ [a, b], then f is one-to-one
on [a, b] and hence has an inverse on [a, b]. Thus, for a mapping F, it makes sense to
investigate the relation between the derivative matrix DF of F and F being invertible.
We start with the following theorem.

THEOREM 2 Consider a mapping F which maps Dxy onto Duv. If F has continuous partial deriva-
tives at x ∈ Dxy and there exists an inverse mapping F−1 of F which has continuous
partial derivatives at u = F(x) ∈ Duv, then

DF−1(u)DF(x) = I

Proof: By the Chain Rule in Matrix Form we get

DF−1(u)DF(x) = D(F−1 ◦ F)(x)

Then, by equation (13.1) we have

D(F−1 ◦ F)(x) = Dx =





∂x
∂x

∂x
∂y

∂y
∂x

∂y
∂y



 =

[

1 0
0 1

]

= I

as required. !

EXAMPLE 1 Consider the mapping defined by

(u, v) = F(x, y) = (y + x2, x)

Solve for the inverse mapping F−1. Find the derivative matrices DF and DF−1 and
verify that DF−1(u, v) is the matrix inverse of DF(x, y).

Solution: The inverse mapping is obtained by solving

u = y + x2, v = x

for x and y. We obtain
x = v, y = u − v2

Hence, the inverse mapping is

(x, y) = F−1(u, v) = (v, u − v2)
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The derivative matrices are:

DF(x, y) =

[

2x 1
1 0

]

, DF−1(u, v) =

[

0 1
1 −2v

]

Form the matrix product,

DF−1(u, v)DF(x, y) =

[

0 1
1 −2v

] [

2x 1
1 0

]

=

[

1 0
2x − 2v 1

]

=

[

1 0
0 1

]

, on substituting v = x.

REMARK

The fact that we could solve and obtain a unique solution for x and y in the preceding
example proves that F has an inverse mapping on R2. It is only in simple examples
that one can carry out this step. Hence it is useful to develop a test to determine if a
mapping F has an inverse mapping.

The determinant of the derivative matrix plays an important role in the study of map-
pings and in their application to multiple integrals.

DEFINITION

Jacobian

The Jacobian of a mapping

(u, v) = F(x, y) = (u(x, y), v(x, y))

is denoted
∂(u, v)

∂(x, y)
, and is defined by

∂(u, v)

∂(x, y)
= det[DF(x, y)] = det

[∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]

REMARK

The Jacobian is the key missing ingredient that we needed to complete our change of
variables procedure outlined in Section 11.3. See Section 13.4.
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EXERCISE 1 Calculate the Jacobian
∂(x, y)

∂(r, θ)
of the mapping F given by

(x, y) = F(r, θ) = (r cos θ, r sin θ)

One can interpret Theorem 2 as asserting that if a mapping F is invertible, then its
derivative matrix DF(x, y) is invertible, and its inverse matrix is the derivative matrix
DF−1(u, v) of the inverse map. Recall from linear algebra that a square matrix has
an inverse matrix if and only if its determinant is non-zero. Thus, it follows from
Theorem 2 that if a mapping F has an inverse mapping F−1 (and both mappings have
continuous partial derivatives), then the Jacobian of F is non-zero. This is stated as a
corollary to Theorem 2.

COROLLARY 3 Consider a mapping defined by

(u, v) = F(x, y) = ( f (x, y), g(x, y))

which maps a subset Dxy onto a subset Duv. Suppose that f and g have continuous
partials on Dxy. If F has an inverse mapping F−1, with continuous partials on Duv,
then the Jacobian of F is non-zero:

∂(u, v)

∂(x, y)
! 0, on Dxy

REMARK

The notation
∂(u, v)

∂(x, y)
for the Jacobian reminds one which partial derivatives have to

be calculated. Thus, if F maps (x, y) → (u, v) and is one-to-one, then the inverse
mapping F−1 maps (u, v)→ (x, y), and the Jacobian of the inverse mapping is denoted
by

∂(x, y)

∂(u, v)
= det[F−1(u, v)] = det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]

Recall from linear algebra that det(AB) = det A det B for all n × n matrices A, B.
Thus, we can deduce from Theorem 2 a simple relationship between the Jacobian of
a mapping and the Jacobian of the inverse mapping. We state this as another corollary
to Theorem 2.
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COROLLARY 4 (Inverse Property of the Jacobian)

If the hypotheses of Theorem 2 hold, then

∂(x, y)

∂(u, v)
=

1

∂(u, v)

∂(x, y)

Proof: By Theorem 2,
I = DF−1(u, v)DF(x, y)I

Taking the determinant of this equation gives

det I = det(DF−1(u, v)DF(x, y))

1 = det(DF−1(u, v)) det(DF(x, y))

Thus, by definition of the Jacobian,

1 =
∂(x, y)

∂(u, v)

∂(u, v)

∂(x, y)

Since DF(x, y) is invertible, we have ∂(u,v)
∂(x,y)
! 0. Therefore, we get

∂(x, y)

∂(u, v)
=

1

∂(u, v)

∂(x, y)

!

Since we are interested in being able to test whether or not F−1 exists, we ask: does

Corollary 3 admit a converse? i.e. does
∂(u, v)

∂(x, y)
! 0 on Dxy imply that F−1 exists?

Unfortunately NO, unless we formulate the question more carefully. The following
example shows what can go wrong.

EXAMPLE 2 Consider the mapping defined by

(u, v) = F(x, y) = (ex cos y, ex sin y)

Show that
∂(u, v)

∂(x, y)
! 0 on R2, but that F−1 does not exist on R2.

Solution: Observe that

∂(u, v)

∂(x, y)
= e2x > 0 for all (x, y) ∈ R2

However, F is not one-to-one on R2, since, for example

F(0, 0) = F(0, 2π) = (1, 0)

Thus, F−1 does not exist on R2.
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The reason the mapping in Example 2 is not invertible is because of the periodic be-
havior of sin y and cos y. However, we know we can create inverse functions for these
by restricting their domain to a neighborhood where they are one-to-one. Similarly,
in Example 2, if we restrict the domain to a neighborhood N(0, 0) of radius less than
2π, it will be possible to solve uniquely for x and y in terms of u and v; in particular,
an inverse mapping does exist. We can generalize this into the following theorem.

THEOREM 5 (Inverse Mapping Theorem)

If a mapping (u, v) = F(x, y) has continuous partial derivatives in some neighborhood

of (a, b) and
∂(u, v)

∂(x, y)
! 0 at (a, b), then there is a neighborhood of (a, b) in which F

has an inverse mapping (x, y) = F−1(u, v) which has continuous partial derivatives.

The proof is beyond the scope of this course.

EXAMPLE 3 Consider the mapping defined by

(u, v) = F(x, y) = (xy − x2, x + y)

Show that F has an inverse mapping in a neighborhood of (1,−2).

Solution: The Jacobian of F is

∂(u, v)

∂(x, y)
= det

[

y − 2x x
1 1

]

= y − 3x

Hence at (x, y) = (1,−2), the Jacobian is non-zero. Clearly the partial derivatives of F
are continuous by the Continuity Theorems. Thus, by the Inverse Mapping Theorem,
there is a neighborhood of (1,−2) in which F has an inverse mapping.

EXERCISE 2 Referring to Example 3, show that the inverse mapping is given by

(x, y) = F−1(u, v) =

(

1

4
(v +

√
v2 − 8u),

1

4
(3v −

√
v2 − 8u)

)

13.2 Geometrical Interpretation of the Jacobian

In this section, we explain the geometrical interpretation of the Jacobian of a map-
ping. This interpretation is based on the following result from linear algebra. The

area of a parallelogram defined by the vectors

[

a1

a2

]

and

[

b1

b2

]

is given by

Area =

∣
∣
∣
∣
∣
∣
det

[

a1 b1

a2 b2

]∣
∣
∣
∣
∣
∣

(13.2)
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We calculate the area of the image in the uv-plane, of a small rectangle in the xy-plane
under a mapping F.

x

y

∆x

∆y

∆Axy ∆Auv

u

v

P Q

R

P′
Q′

R′
F

We approximate the image of the rectangle defined by the vectors
−−→
PQ and

−−→
PR as a

parallelogram defined by the vectors
−−−→
P′Q′ and

−−−→
P′R′, and use the linear approximation

to approximate
−−−→
P′Q′ and

−−−→
P′R′.

Since
−−→
PQ =

[

∆x
0

]

and
−−→
PR =

[

0
∆y

]

, we obtain

−−−→
P′Q′ ≈

[

ux uy

vx vy

] [

∆x
0

]

=

[

ux∆x
vx∆x

]

−−−→
P′R′ ≈

[

ux uy

vx vy

] [

0
∆y

]

=

[

uy∆y
vy∆y

]

for ∆x and ∆y sufficiently small. Note that the partial derivatives are evaluated at P.
We have

∆Axy = ∆x∆y

and so, by (13.2),

∆Auv ≈

∣
∣
∣
∣
∣
∣
det

[

ux∆x uy∆y
vx∆x vy∆y

]∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
det

[

ux uy

vx vy

]∣
∣
∣
∣
∣
∣
∆x∆y

since ∆x and ∆y are positive. Thus, by definition of the Jacobian,

∆Auv ≈
∣
∣
∣
∣
∣

∂(u, v)

∂(x, y)

∣
∣
∣
∣
∣
∆Axy (13.3)

where the Jacobian is evaluated at P.

In words, the Jacobian of a mapping F describes the extent to which F increases or
decreases areas. We can think of the Jacobian of F as a magnification factor for (very
small) areas that are mapped by F. Keep in mind that the basic relation (13.3) is an
approximation, which is valid only for small areas, and which becomes increasingly
accurate as ∆x and ∆y tend to zero.
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EXAMPLE 1 Calculate the approximate area of the image of a small rectangle of area ∆x∆y, lo-
cated at the point (3, 4), under the mapping F defined by

(u, v) = F(x, y) =
(

−x +
√

x2 + y2, x +
√

x2 + y2
)

Solution: Differentiation and evaluation at (3, 4) gives the derivative matrix at (3, 4):

DF(3, 4) =

[

− 2
5

4
5

8
5

4
5

]

At (3, 4) the Jacobian is

∂(u, v)

∂(x, y)
= det

[

− 2
5

4
5

8
5

4
5

]

= −
8

5

Therefore, the area of the image is approximately

∆Auv ≈
8

5
∆Axy

We can use a diagram to demonstrate what is happening geometrically in the exam-
ple.

x

y

∆y

∆x
u

v

(3, 4)

(2, 8)

uv = const.

v = u + const.

EXAMPLE 2 Consider the mapping F defined by

(x, y) = F(r, θ) = (r cos θ, r sin θ)

Find the image in the xy-plane, of a rectangle in the rθ-plane, and verify directly that
the Jacobian gives the magnification factor for area.

Solution: Using what we did in Example 12.1.3, we find that the images of the lines
r = k and θ = * are the circles x2 + y2 = k2 and the lines y = x tan θ.
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x

y

r

θ

∆θ
∆θ

r∆θ
∆r

∆r

(r, θ)

circle of
radius r

y = x tan θ

The area of the rectangle in the rθ-plane is

∆Arθ = ∆r∆θ

The image of this rectangle in the xy-plane can be approximated by a rectangle with
sides of length r∆θ and ∆r, for ∆r and ∆θ sufficiently small. So,

∆Axy ≈ r∆r∆θ = r∆Arθ

However, the Jacobian of the mapping is

∂(x, y)

∂(r, θ)
= r > 0

(Exercise 13.1.1). Consequently,

∆Axy ≈
∣
∣
∣
∣
∣

∂(x, y)

∂(r, θ)

∣
∣
∣
∣
∣
∆Arθ

which verifies the area transformation formula (13.3).

EXERCISE 1 Let F(x, y) = (x2y,−xy) and let S be the square pic-
tured in the diagram. Will the image of S under F
have more or less area? Explain your answer.

x

y

1
2

1

1
2

1
S

REMARK

For a linear mapping (u, v) = F(x, y) = (ax+by, cx+dy) where a, b, c, d are constants,
the derivative matrix is

DF(x, y) =

[

a b
c d

]
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and thus the linear approximation is exact by Taylor’s Theorem since all second par-
tials are zero. Therefore, for a linear mapping the approximation (13.3) becomes an
exact relation.

EXERCISE 2 Show that the linear mapping (u, v) = F(x, y) = (x + 2y, x + y) preserves areas.
Illustrate the action of the mapping by finding the image of the square with vertices
(0, 0), (0, 1), (1, 0) and (1, 1).

EXERCISE 3 Use the Jacobian to verify the well-known result that any linear mapping F which is
a rotation,

(u, v) = F(x, y) = (x cos θ + y sin θ,−x sin θ + y cos θ)

where θ is a constant, preserves areas.

13.3 Constructing Mappings

When performing change of variables in double and triple integrals, it will be very
important to be able to invent an invertible mapping which transforms one region to
another, simpler region. We demonstrate this with some examples.

EXAMPLE 1 Find a linear mapping F which will transform the parallelogram with vertices (0, 0),
(2, 1), (3, 4) and (1, 3) in the xy-plane into the unit square 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 in the
uv-plane. Calculate the Jacobian of F and hence find the area of the parallelogram.

Solution:

x

y

u

v

0

1

1

F

(0, 0)

(2, 1)

(1, 3)

(3, 4)

Dxy

Duv

Solution: The lines bounding Dxy are 2y − x = 0, 2y − x = 5, 3x − y = 0, and 3x −
y = 5. We recall from chapter 12, that when performing a mapping, we substituted
the equations of each line into the component functions. Thus, we want to pick
component functions u = f (x, y), v = g(x, y), so that the image of the lines are u = 0,
u = 1, v = 0, and v = 1 respectively. Observe, that the bounding lines come in pairs.
To get the first pair to have images u = 0 and u = 1, we see that we can take u =

2y−x

5
.

For the second pair to have images v = 0 and v = 1 we take v =
3x−y

5
. Thus, the

desired mapping is

(u, v) = F(x, y) =

(

2y − x

5
,

3x − y

5

)
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The Jacobian is
∂(u, v)

∂(x, y)
= det

[

− 1
5

2
5

3
5
− 1

5

]

= −
1

5

Since the mapping is linear, we have the exact relation

Auv =

∣
∣
∣
∣
∣

∂(u, v)

∂(x, y)

∣
∣
∣
∣
∣
Axy =

1

5
Axy

Hence, the area of the parallelogram is 5 square units.

EXAMPLE 2 Find a linear mapping which transforms the ellipse
x2

a2
+

y2

b2
= 1 into the unit circle

u2 + v2 = 1.

Solution: We want to pick u = f (x, y) and v = g(x, y), such that we turn
x2

a2
+

y2

b2
= 1

into u2 + v2 = 1. If we write the ellipse as
(

x

a

)2

+

(
y

b

)2

= 1, then it is clear that we

want to take u =
x

a
and v =

y

b
. Hence, the desired mapping is

(u, v) = F(x, y) =
(

x

a
,

y

b

)

EXERCISE 1 Find a linear mapping F which transforms the ellipse 3x2 + 2xy + y2 = 4 into the
circle u2 + v2 = 4.

EXAMPLE 3 Find an invertible mapping which will transform the region Dxy in the first quadrant
bounded by the hyperbola xy = 1, xy = 3, x2 − y2 = 2, x2 − y2 = 4 into a square in
the uv-plane.

Solution: We again see that we have pairs of equations. Thus, if we take u = xy and
v = x2 − y2 we see that the images of the hyperbola xy = 1, xy = 3, x2 − y2 = 2,
x2 − y2 = 4 are u = 1, u = 3, v = 2, v = 4. Hence, the mapping

(u, v) = F(x, y) = (xy, x2 − y2)

gives the desired transformation. Observe that it would be difficult to solve for the
inverse explicitly, however, we can at least show that the mapping is locally invertible
by applying the Inverse Mapping Theorem. The Jacobian of F is

det DF(x, y) = det

[

y x
2x −2y

]

= −2x2 − 2y2

which is non-zero on the region Dxy and F has continuous partial derivatives, so F is
invertible in a neighborhood of every point in Dxy by the Inverse Mapping Theorem.
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REMARK

In Example 3, the solution does not actually prove that the mapping is invertible on
the entire region. In practice, we often assume that “invertible in a neighborhood of
each point” implies “invertible over the entire region”, but this is not always true.
(For example, F(r, θ) = (r cos θ, r sin θ) on 1 ≤ r ≤ 2, 0 ≤ θ ≤ 4π has nonzero
Jacobian at each point but is not one-to-one due to periodicity.)

EXERCISE 2 Find an invertible mapping which will transform the region Dxyz in the first octant
bound by xy = 1, xy = 3, xz = 1, xz = 3, yz = 2, and yz = 4 into a cube in the
uvw-space.

13.4 The Change of Variables Theorem for Double Integrals

We are now in a position to describe the change of variables process for double
integrals that was hinted at in Section 11.3.

Recall that our objective was to examine the effect of a mapping

(x, y) = G(u, v) (13.4)

on a double integral
"

Dxy

f (x, y) dA

The mapping changes the integrand from f (x, y) to f (G(u, v)) and it transforms the
region of integration from Dxy in the xy-plane to the region Duv in the uv-plane.

In this type of calculation it is convenient to replace the symbol “dA” in the double
integral by “dx dy” if one is working in the xy-plane, and by “du dv” if one is working
in the uv-plane.

In order to derive the change of variables formula for double integrals, we need the
formula which describes how areas are related under a mapping G given by (13.4).
The geometric interpretation of the Jacobian gives us

∆Axy ≈
∣
∣
∣
∣
∣

∂(x, y)

∂(u, v)

∣
∣
∣
∣
∣
∆Auv (13.5)

for ∆u, ∆v sufficiently small where the Jacobian
∂(x, y)

∂(u, v)
is evaluated at a point in the

region. Notice that we have interchanged the roles of (x, y) and (u, v) in equations
(13.4) and (13.5), as compared to Section 13.2.
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THEOREM 1 (Change of Variables Theorem)

Let each of Duv and Dxy be a closed bounded set whose boundary is a piecewise-
smooth closed curve. Let

(x, y) = G(u, v) = (g(u, v), h(u, v))

be a one-to-one mapping of Duv onto Dxy, with g, h ∈ C1, and
∂(x, y)

∂(u, v)
! 0 except

for possibly on a finite collection of piecewise-smooth curves in Duv. If f (x, y) is
continuous on Dxy, then

"

Dxy

f (x, y) dx dy =

"

Duv

f
(

g(u, v), h(u, v)
)
∣
∣
∣
∣
∣

∂(x, y)

∂(u, v)

∣
∣
∣
∣
∣

du dv

While a proof of this theorem is beyond the scope of this course, we can make the
result plausible by the following argument:

Consider a partition P of Duv into rectangles, by means of straight lines parallel to
the coordinate axes. The images of these lines under the given transformation will in
general be two families of curves which will define a partition P∗ of Dxy into elements
of area which are approximately parallelograms. We can use this partition, instead of

a rectangular partition, to define

"

Dxy

f (x, y) dx dy.

Thus,
"

Dxy

f (x, y) dx dy = lim
∆P∗→0

n∑

i=1

f (xi, yi)∆Ai

= lim
∆P∗→0

n∑

i=1

f
(

g(ui, vi), h(ui, vi)
)
∣
∣
∣
∣
∣

∂(x, y)

∂(u, v)

∣
∣
∣
∣
∣
(ui,vi)

∆Ai

=

"

Duv

f
(

g(u, v), h(u, v)
)
∣
∣
∣
∣
∣

∂(x, y)

∂(u, v)

∣
∣
∣
∣
∣

dA

by using the definition of double integral relative to the rectangular partition of Duv.

The lack of rigor occurs when we use the approximation (13.5).
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EXAMPLE 1 Evaluate

"

Dxy

(x + y) dA, where Dxy is the set bounded by the parallelogram with

vertices (0, 0), (2, 1), (1, 3), and (3, 4).

Solution: In Example 13.3.1, we found that the mapping

(u, v) = F(x, y) =

(

1

5
(2y − x),

1

5
(3x − y)

)

maps Dxy onto Duv, the unit square in the uv-plane.

x

y

u

v

0

1

1

F

(0, 0)

(2, 1)

(1, 3)
(3, 4)

Dxy

Duv

The Jacobian of F is
∂(u, v)

∂(x, y)
= −

1

5

Observe that our mapping F maps Dxy to Duv, but the Change of Variables Theorem
requires a mapping which maps Duv to Dxy. In particular, we actually require the
inverse G = F−1 of our mapping. Solving for x and y we find that

(x, y) = G(u, v) = F−1(u, v) = (u + 2v, 3u + v)

Hence,
∂(x, y)

∂(u, v)
= −5, and the integrand becomes x + y = 4u + 3v. Then, the Change

of Variables Theorem gives

"

Dxy

(x + y) dx dy =

"

Duv

(4u + 3v) |−5| du dv

It is straightforward to write this double integral as an iterated integral and evaluate
it. The final result is

"

Dxy

(x + y) dA =
35

2

EXERCISE 1 Fill in the details in Example 1.
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EXAMPLE 2 Use the mapping (u, v) = F(x, y) = (x + y,−x + y) to evaluate
∫ π

0

∫ π−y

0

(x + y) cos(x − y) dx dy

Solution: The region Dxy of integration is 0 ≤ x ≤ π − y and 0 ≤ y ≤ π. Thus, the
region is bounded by the lines x = 0, y = 0 and x = π− y. Since we want to integrate
with respect to u and v, we use the mapping F to determine the new region Duv.

For the line x = 0, 0 ≤ y ≤ π, we get v = y = u with 0 ≤ u ≤ π.

For the line y = 0, 0 ≤ x ≤ π, we get v = −x = −u with 0 ≤ u ≤ π.

For the line x + y = π, 0 ≤ x ≤ π, we get u = π. We also have u − v = 2x. Thus,
v = u − 2x = π − 2x, which implies −π ≤ v ≤ π.

x

y

u

v

x = 0

π

π

π

π

−π

y = 0
y = π − x u = v

u = −v

u = π

To apply the Change of Variables Theorem, we also require the Jacobian
∂(x, y)

∂(u, v)
.

Rather than finding the inverse mapping, we can instead use the inverse property of
the Jacobian. We have

∂(u, v)

∂(x, y)
=

∣
∣
∣
∣
∣
∣

1 1
−1 1

∣
∣
∣
∣
∣
∣
= 2

Thus,
∂(x, y)

∂(u, v)
=

1

∂(u, v)

∂(x, y)

=
1

2

Since Jacobian is non-zero and the mapping has continuous partial derivatives, we
can apply the Change of Variables Theorem to get

∫ π

0

∫ π−y

0

(x + y) cos(x − y) dx dy =

"

Duv

u cos(−v)

∣
∣
∣
∣
∣

1

2

∣
∣
∣
∣
∣

dA

From the diagram, we observe that we can write the region Duv as −u ≤ v ≤ u and
0 ≤ u ≤ π. Thus,

∫ π

0

∫ π−y

0

(x + y) cos(x − y) dx dy =

∫ π

0

∫ u

−u

u cos(−v)

∣
∣
∣
∣
∣

1

2

∣
∣
∣
∣
∣

dv du

=
1

2

∫ π

0

−u sin(−v)

∣
∣
∣
∣
∣

u

−u

du

=
1

2

∫ π

0

2u sin u du = −u cos u + sin u

∣
∣
∣
∣
∣

π

0

= π



170 Chapter 13 Jacobians and the Change of Variables Theorem

Double Integrals in Polar Coordinates

[Refer to Appendix B for an introduction to polar coordinates.]

If the boundary of the region is a circle centered on the origin or a circle that passes
through the origin, it will often help to transform from polar to Cartesian coordinates.
Recall that the mapping from polar to Cartesian coordinates is

(x, y) = F(r, θ) = (r cos θ, r sin θ)

which has Jacobian,
∂(x, y)

∂(r, θ)
= r

Hence, we must restrict r > 0 so that the mapping is one-to-one and the Jacobian is
non-zero so that we can apply the Change of Variables Theorem. Note that we can
make this restriction even if the origin is in the region as the integral over a single
point is 0.

The Change of Variables Theorem in polar coordinates reads:
"

Dxy

f (x, y) dA =

"

Drθ

f (r cos θ, r sin θ)r dr dθ

EXAMPLE 3 Evaluate

"

Dxy

x

x2 + y2
dA where Dxy is the half disc (x − 1)2 + y2 ≤ 1, x ≥ 1.

Solution: We first convert the equations from Cartesian coordinates to polar coordi-
nates. Since x = r cos θ we get that x = 1 becomes

r cos θ = 1

r = sec θ

Similarly, x2 + y2 = 2x becomes

r2 = 2r cos θ

r = 2 cos θ

assuming r ! 0. The image Drθ is shown in the figure below. The values of θ at the

points of intersection are obtained by solving sec θ = 2 cos θ, giving θ = ±
π

4
.

x

y

r

θ

x = 1

π
2

π
4

22

− π
2

− π
4

(x − 1)2 + y2 = 1

r = sec θ

r = 2 cos θ
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The Change of Variables Theorem thus implies

"

Dxy

x

x2 + y2
dx dy =

"

Drθ

r cos θ

r2
|r| dr dθ =

"

Drθ

cos θ dr dθ.

The set Drθ is described by the inequalities

sec θ ≤ r ≤ 2 cos θ, and −
π

4
≤ θ ≤

π

4

We can thus write the integral over Drθ as an iterated integral,

"

Drθ

cos θ dr dθ =

π
4∫

− π4

2 cos θ∫

sec θ

cos θ dr dθ

It is a routine matter to evaluate this, leading to the final answer

"

Dxy

x

x2 + y2
dx dy = 1

EXERCISE 2 Fill in the details in Example 3.

REMARK

Because polar coordinates have a simple ge-
ometric interpretation one can obtain the r
and θ limits of integration directly from the
diagram in the xy-plane, without drawing
the region Drθ. The method is illustrated in
the diagram.

x

y

θ

x = 1

θ = π
4

2

θ = − π
4

(x − 1)2 + y2 = 1

r = sec θ r = 2 cos θ

EXERCISE 3 Evaluate
"

Dxy

1
√

x2 + y2
dA

where D is the region in the first quadrant bounded by the circles x2 + y2 = 1 and
x2 + y2 = 4. Use polar coordinates, as in Example 3.
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EXERCISE 4 Evaluate

I =

"

Dxy

xy dA

where Dxy is the set in the first quadrant bounded by y = x, y = ex, xy = 2 and xy = 3.

Hint: Find a mapping which maps Dxy into a rectangle Duv in the uv-plane.

Chapter 13 Problem Set

1. Find the Jacobian of the mapping

(u, v) = F(x, y) = (x2 sin y, y2 cos x)

2. Consider the map defined by

(u, v) = F(x, y) = (y + e−x, y − e−x)

(a) Show that F has an inverse map by finding F−1

explicitly.

(b) Find the derivative matrices DF(x, y) and
DF−1(u, v) and verify that

DF(x, y)DF−1(u, v) = I

(c) Verify that the Jacobians satisfy

∂(x, y)

∂(u, v)
=

[

∂(u, v)

∂(x, y)

]−1

3. Consider the map defined by

(u, v) = F(x, y) = (y + xy, y − xy)

(a) Show that F has an inverse map by finding F−1

explicitly.

(b) Find the derivative matrices DF(x, y) and
DF−1(u, v) and verify that

DF(x, y)DF−1(u, v) = I

(c) Verify that the Jacobians satisfy

∂(x, y)

∂(u, v)
=

[

∂(u, v)

∂(x, y)

]−1

4. Calculate the Jacobian
∂(u, v)

∂(x, y)
for the following maps

T . Find all points at which the Jacobian is zero. Use
the Inverse Map Theorem to prove that T−1 exists in a
neighbourhood of the indicated point:

(a) (u, v) = T (x, y) = (cos(x+ y), sin(x− y));
(
π
4
, π

4

)

(b) (u, v) = T (x, y) = (x + y, 2xy2) ; (0, 1)

5. Calculate the approximate area of the image of a small
rectangle of area ∆x∆y located at the point (a, b) under
the map T defined by

(a) T (x, y) = (xy, x2 − y2), (a, b) =
(

1, 1
2

)

(b) T (x, y) =





√

x2 + y2,
x

√

x2 + y2




, (a, b) = (1, 1)

6. Invent a transformation that maps the parallelogram
bounded by the lines y = 3x − 4, y = 3x, y = 1

2
x and

y = 1
2
(x + 4) onto the unit square in the first quadrant.

7. Invent a transformation that maps the ellipse x2+4xy+

5y2 = 4 onto the unit circle.

8. Invent an invertible transformation that transforms the
ellipse x2 + 4xy + 5y2 = 5 onto the unit circle and de-
termine the inverse map.

9. Invent an invertible transformation that transforms the
ellipse 3x2 + 6xy + 4y2 = 4 onto the unit circle and
determine the inverse map.

10. Invent a transformation that maps the ellipsoid
x2 + 8y2 + 6z2 + 4xy − 2xz + 4yz = 9 onto the unit
sphere.

11. Invent an invertible transformation that maps the ellip-
soid x2 + 2y2 + 2z2 + 2xy + 2xz + 2yz = 1 onto the unit
sphere.

12. Consider the map defined by

(u, v) = F(x, y) = (x + ky2, y)

where k is a non-negative constant.

(a) Find the image of the family of lines x = constant
under the map. Illustrate with a sketch. What
happens when k is close to zero, and when k is
very large? Estimate the area of the image of a
small rectangle of area ∆x∆y.

(b) Find and sketch the image of the disc x2 + y2 ≤ 1
under the map. How does the value of k affect the
image? Make a conjecture about the area of the
image.

13. Evaluate the following integrals.
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(a)

"

D

x + y2 dA where D is the region bounded by

x = y, x = −y and y = −1.

(b)

"

Dxy

(x + 2y)2 dA, where Dxy is bounded by the

ellipse x2 + 4xy + 5y2 = 5.

14. Use the map T (x, y) = (x + y,−x + y) to evaluate

π∫

0

π−y
∫

0

(x + y) cos(x − y) dx dy

15. Let D be the unit disc x2 + y2 ≤ 1. Use polar coordi-
nates to show that

"

D

ex2+y2

dA = π(e − 1)

16. Evaluate

"

D

x
√

x2 + y2
dA, where D is the region in-

side the circle x2 + y2 = 2x, but outside the circle
x2 + y2 = 1. Use polar coordinates and describe the
image of D.

17. Let D be the region in the xy-plane enclosed by the
lines y = 2− x, y = 4− x, y = x and y = 0. Evaluate the
Jacobian of the map (x, y) = F(u, v) = (u + uv, u − uv),
and show that it is never zero on D. Sketch the image
of D in the uv-plane. Use this map to evaluate

"

D

e
x−y
x+y

x + y
dx dy

18. Let

f (x, y) =







1 if x + y ≥ 1

−1 if x + y < 1

Evaluate

"

D

f (x, y) dA, where D is the subset of R2

defined by |x| + |y| ≤ 2.

19. A metal plate, bounded by x2 − y2 = 1, −x2 + 3y2 = 1,
x = 0 and y = 0, and lying in the first quadrant, is
coated with silver. The density of silver at position
(x, y) on the plate is given by ρ(x, y) = xy grams per
unit area. Calculate the total amount of silver on the
plate.

20. Let Dxy be the region bounded by y = 1 − x, y = 2 − x,

y = 0 and x = y and let (u, v) = F(x, y) =
(

x − y, 1
x+y

)

.

(a) Sketch the image of D under F in the uv-plane.

(b) Find the Jacobian of F and show that it is never 0
on D.

(c) Find the mapping F−1 and the Jacobian for F−1.

(d) Use the mapping F to evaluate

"

Dxy

x − y

x + y
dA.

21. Find a linear transformation that maps the ellipse
x2 + 4xy + 5y2 = 4 onto a unit circle. Hence show
that the area enclosed by the ellipse equals 4π square
units (without explicitly integrating).

22. Let D be the subset of R2 defined by
|x| + |y| ≤ 1, and let f be a continuous single-variable
function on the interval [−1, 1]. Prove that

"

D

f (x + y) dx dy =

1∫

−1

f (u) du

23. Let D be the disc of radius b centered at the origin, and
let f be a continuous single-variable function. Prove
that

"

D

f (x2 + y2) dA = π

∫ b2

0

f (u) du

24. Consider the regions Dxy = {(x, y) | x2+4xy+13y2 ≤ 9}
and Duv = {(u, v) | u2 + v2 ≤ 1}.

(a) Find an invertible mapping F that transforms Dxy

into Duv. Prove that your mapping F is invertible.

(b) The number of bacteria per unit area in Dxy is
given by

c(x, y) =
10

9π
(x2 + 4xy + 13y2)2

Use the Change of Variables Theorem to write an
expression for the number of bacteria in Dxy as
double integral over Duv.

(c) Determine the number of bacteria in Dxy.

25. * Let f be a continuous single-variable function. Prove
that

2

∫ b

a

∫ x

a

f (x) f (y) dy dx =

[∫ b

a

f (x) dx

]2

26. Consider a large tank with water of depth h. See the
left-hand figure — we’ll ignore the third dimension
here.

h

y

x

h

y

x
a b a b

Undisturbed Water Disturbed Water

Suppose now that the water is disturbed, creating the
wave shown in the right-hand figure, and that the sur-
face of the water has the equation

y = h + A sin k(x − a), k = 4π/(b − a)
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(a) The average depth of the water over the interval

a ≤ x ≤ b is given by

∫ b

a
f (x)dx

b − a
where y = f (x)

defines the surface of the water. Calculate the
average depth for the disturbed and undisturbed
cases, and compare your answers. Does your an-
swer agree with your physical intuition? Sugges-

tion: Without loss of generality, set a = 0.

(b) The centre of mass of the water is located at the
point (x̄, ȳ) where

x̄ =

#

D

ρx dxdy

#

D

ρ dxdy
, ȳ =

#

D

ρy dxdy

#

D

ρ dxdy

where ρ is the density of water (assumed con-
stant) and D is the region occupied by the water.
Calculate the centre of mass for the disturbed and
undisturbed cases, and compare your answers.
You may be surprised by the result!

27. * (a) Show that

"

D(R)

e−(x2+y2) dx dy = π(1 − e−R2

)

where D(R) is the disc of radius R, centre (0, 0).

(b) Let D be the square {(x, y) | |x| ≤ b, |y| ≤ b}.
Show that

"

D

e−(x2+y2) dx dy = 4





b∫

0

e−x2

dx





2

.

(c) Hence, prove that

∞∫

0

e−x2

dx =

√
π

2

a result which is important in probability theory
and in other applications. This integral cannot be
evaluated directly.
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Triple Integrals

14.1 Definition of Triple Integrals

Let D be a closed bounded set in R3 whose bound-
ary consists of a finite number of surface elements
which are smooth except possibly at isolated points.
Let f (x, y, z) be a function which is bounded on D.
Subdivide D by means of three families of planes
which are parallel to the xy−, yz−, and xz−planes
respectively, forming a partition P of D.

Label the N rectangular blocks that lie completely in D in some specific order, and
denote their volumes by ∆Vi, i = 1, . . . , n. Choose an arbitrary point (xi, yi, zi) in the
i-th block, i = 1, . . . , n, and form the Riemann sum

n∑

i=1

f (xi, yi, zi)∆Vi (14.1)

Let ∆P denote the maximum of the dimensions of all rectangular blocks in the parti-
tion P.

DEFINITION

Integrable

A function f (x, y, z) which is bounded on a closed bounded set D ⊂ R3 is said to be
integrable on D if and only if all Riemann sums approach the same value as ∆P→ 0.

DEFINITION

Triple Integral

If f (x, y, z) is integrable on a closed bounded set D, then we define the triple integral
of f over D, as

$

D

f (x, y, z) dV = lim
∆P→0

n∑

i=1

f (xi, yi, zi)∆Vi

175
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Is there any guarantee that the limiting process in the definition of the triple integral
actually leads to a unique value, i.e. that the limit exists? It is possible to define
weird functions for which the limit does not exist, i.e. which are not integrable on
D. However, if f is continuous on D, it can be proved that f is integrable on D.
Functions which are discontinuous in D may be integrable on D. For example, if f
is continuous on D except at points which lie on a surface or curve in D, then f is
integrable on D. The proofs of these results are beyond the scope of this course.

Interpretation of the Triple Integral

When you encounter the triple integral symbol
$

D

f (x, y, z) dV

you should think of “limit of a sum”. In itself, the triple integral is a mathemati-
cally defined object. It has many interpretations, depending on the interpretation that
you assign to the integrand f (x, y, z). The “dV” in the triple integral symbol should
remind you of the volume of a rectangular block in a partition of D.

Triple Integral as Volume:

The simplest interpretation is when you specialize f to be the constant function with
value unity:

f (x, y, z) = 1, for all (x, y, z) ∈ D

Then, the Riemann sum (14.1) simply sums the volumes of all rectangular blocks in
D, and the triple integral over D serves to define the volume V(D) of the set D:

V(D) =

$

D

1 dV

Triple Integral as Mass:

Think of a planet or star whose density varies with position. Let D denote the subset
of R3 occupied by the star. Let f (x, y, z) denote the density (mass per unit volume)
at position (x, y, z). The mass of a small rectangular block located within the star at
position (xi, yi, zi) will be approximately

∆Mi ≈ f (xi, yi, zi)∆Vi

Thus, the Riemann sum corresponding to a partition P of D

n∑

i=1

f (xi, yi, zi)∆Vi

will approximate the total mass M of the star, and the triple integral of f over D,
being the limit of the Riemann sum, will represent the total mass:

M =

$

D

f (x, y, z) dV
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Average Value of a Function:

By analogy with functions of one and two variables we can use the triple integral to
define the average value of a function f (x, y, z) over a closed and bounded set D ⊂ R3.

DEFINITION

Average Value

Let D ⊂ R3 be closed and bounded with volume V(D) ! 0, and let f (x, y, z) be a
bounded and integrable function on D. The average value of f over D is defined by

favg =
1

V(D)

$

D

f (x, y, z) dV

REMARK

If you have the impression that you have read this section someplace else, you’re
right. Compare it with Section 11.1. The only essential change is to replace “area”
by “volume”.

Properties of the Triple Integral

Of course, the triple integral satisfies the same basic properties as the double integral.

THEOREM 1 (Linearity)

If D ⊂ R3 is a closed and bounded set, c is a constant, and f and g are two integrable
functions on D, then

$

D

( f + g) dV =

$

D

f dV +

$

D

g dV

$

D

c f dV = c

$

D

f dV

THEOREM 2 (Basic Inequality)

If D ⊂ R3 is a closed and bounded set and f and g are two integrable functions on D
such that f (x, y, z) ≤ g(x, y, z) for all (x, y, z) ∈ D, then

$

D

f dV ≤
$

D

g dV
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THEOREM 3 (Absolute Value Inequality)

If D ⊂ R3 is a closed and bounded set and f is an integrable function on D, then

∣
∣
∣
∣
∣
∣
∣
∣

$

D

f dV

∣
∣
∣
∣
∣
∣
∣
∣

≤
$

D

| f | dV

THEOREM 4 (Decomposition)

Assume D ⊂ R3 is a closed and bounded set and f is an integrable function on D.
If D is decomposed into two closed and bounded subsets D1 and D2 by a piecewise
smooth surface C, then

$

D

f dV =

$

D1

f dV +

$

D2

f dV

14.2 Iterated Integrals

We generalize the method used in Section 11.2, and show how to express a triple
integral as a 3-fold iterated integral. This enables you to evaluate triple integrals
exactly for sufficiently simple functions and integration sets.

Consider a set D ⊂ R3 which is described by inequalities of the form

z*(x, y) ≤ z ≤ zu(x, y)

and
(x, y) ∈ Dxy

Here Dxy is a closed bounded subset of
R2 whose boundary is a piecewise smooth
closed curve, and z*, zu are continuous
functions on Dxy. Think of the set D as
being the 3-D region with bottom surface
z = z*(x, y) and top surface z = zu(x, y),
where the extent is defined by the 2-D set
Dxy.

In order to write a triple integral as an iterated integral, take an arbitrary point
(x, y) ∈ Dxy. Then you integrate f (x, y, z) with respect to z from z*(x, y) to zu(x, y),
and integrate the result over Dxy, as a double integral.

This procedure essentially sums over all rectangular blocks in a partition of D, and
hence gives the triple integral of f (x, y, z) over D.
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THEOREM 1 Let D be the subset of R3 defined by

z*(x, y) ≤ z ≤ zu(x, y) and (x, y) ∈ Dxy

where z* and zu are continuous functions on Dxy, and Dxy is a closed bounded subset
in R2, whose boundary is a piecewise smooth closed curve. If f (x, y, z) is continuous
on D, then

$

D

f (x, y, z) dV =

"

Dxy

zu(x,y)
∫

z*(x,y)

f (x, y, z) dz dA

REMARK

As with double iterated integrals, we are doing partial integration. That is, to evaluate
the inner integral of

"

Dxy

zu(x,y)
∫

z*(x,y)

f (x, y, z) dz dA

we hold x and y constant and integrate with respect to z.

Keep in mind that when evaluating a triple integral, it is not essential to integrate first
with respect to z. One chooses the order of integration that is most convenient.

That is, if you can describe D by inequalities of the form

x*(y, z) ≤ x ≤ xu(y, z)

with (y, z) ∈ Dyz, then you would get

$

D

f (x, y, z) dV =

"

Dyz

xu(y,z)
∫

x*(y,z)

f (x, y, z) dx dA

On the other hand, if you can describe D by inequalities of the form

y*(x, z) ≤ y ≤ yu(x, z)

with (x, z) ∈ Dxz, then you would get

$

D

f (x, y, z) dV =

"

Dxz

yu(x,z)
∫

y*(x,z)

f (x, y, z) dy dA

We will demonstrate this in the example and exercises below.
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EXAMPLE 1 Evaluate

$

D

z dV , where D is the solid tetrahedron with vertices (a, 0, 0), (0, b, 0),

(0, 0, c), and (0, 0, 0).

Solution: The tetrahedron is bounded by the planes x = 0, y = 0, z = 0, and
x

a
+

y

b
+

z

c
= 1. Thus, the region D can be described by

0 ≤ z ≤ c
(

1 −
x

a
−

y

b

)

, and (x, y) ∈ Dxy

where Dxy is bounded by x = 0, y = 0, and the intersection of the inclined face with
z = 0. The intersection is

x

a
+

y

b
+

0

c
= 1⇒ y = b

(

1 −
x

a

)

x

x

z y

y

(a, 0, 0)

(0, b, 0)

(0, 0, c)

Dxy

Dxy

D

0 (a, 0)

(0, b)

zu = c(1 − x
a
− y

b
)

zl = 0
yl = 0

yu = b(1 − x
a
)

Thus, by Theorem 1,

$

D

z dV =

"

Dxy

c(1− x
a−

y
b )

∫

0

z dz dA =

a∫

0

b(1− x
a )

∫

0

c(1− x
a−

y
b )

∫

0

z dz dy dx

on writing the outer double integral over Dxy as a double iterated integral. After
evaluating the integrals, one obtains as a final answer,

$

D

z dV =
1

24
abc2

EXERCISE 1 Verify the answer in Example 1 by evaluating the iterated integral.

EXERCISE 2 Write the triple integral in Example 1 as an iterated integral taking the variables in
the order y, x, z. Evaluate the iterated integral and verify you get the same answer as
in Example 1.
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EXERCISE 3 In how many ways can a triple integral be written as an iterated integral?

EXAMPLE 2 Evaluate

$

D

z

4 − y
dV , where D is the region bounded by the cylinder y2 + z2 = 4,

and the planes x + y = 2, x + 2y = 6, z = 0, y = 0, and lying in the first octant.

Solution: Since x only occurs in two of the equations, it is convenient to integrate
first with respect to x, and describe D by the inequalities

2 − y ≤ x ≤ 6 − 2y and (y, z) ∈ Dyz

where Dyz is the region in the first quadrant bounded by y2 + z2 = 4, y = 0, and z = 0.

x

zz

y

y
y2 + z2 = 4

Dyz

Dyz

D

0

2

2

zu =
√

4 − y2

zl = 0

xl = 2 − y

xu = 6 − 2y

x + 2y = 6

x + y = 2

Thus,

$

D

z

4 − y
dV =

"

Dyz

6−2y
∫

2−y

z

4 − y
dx dA =

"

Dyz

z dA,

=

2∫

0

√
4−y2

∫

0

z dz dy =
1

2

2∫

0

(4 − y2) dy =
8

3

EXERCISE 4 Evaluate the triple integral in Example 2 by writing it as an iterated integral with
the variables in the order z, x, y. Why would it not make sense to integrate first with
respect to y?

EXERCISE 5 Let D be the subset of R3 (a prism) bounded by the planes x = 0, x = 2, y = 0, z = 0,

and y + z = 1. Evaluate

$

D

y dV .
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14.3 The Change of Variables Theorem for Triple Integrals

A mapping F from R3 to R3 can be used to simplify a triple integral

$

Dxyz

f (x, y, z) dV

either by changing the integrand f (x, y, z) or by deforming the set Dxyz in xyz-space
into a simpler shape Duvw in uvw-space, thereby simplifying the limits of integration.
In this type of calculation, it is convenient to replace the symbol “dV” in the triple
integral by “dx dy dz” if one is working in xyz-space, and by “du dv dw” if one is
working in uvw-space.

Just as for change of variables in double integrals, we require an appropriate Jacobian
in this context. The details are completely analogous to the two-variable case and
have been placed in an appendix to this section. With this in hand, we can now state
the Change of Variables Theorem for triple integrals.

THEOREM 1 (Change of Variables Theorem)

Let
x = g(u, v,w), y = h(u, v,w), z = k(u, v,w)

be a one-to-one mapping of Duvw onto Dxyz, with g, h, k having continuous partials,
and

∂(x, y, z)

∂(u, v,w)
! 0 on Duvw

If f (x, y, z) is continuous on Dxyz, then

$

Dxyz

f (x, y, z) dV =

$

Duvw

f
(

g(u, v,w), h(u, v,w), k(u, v,w)
)
∣
∣
∣
∣
∣

∂(x, y, z)

∂(u, v,w)

∣
∣
∣
∣
∣

dV

A proof is beyond the scope of this course, but the volume transformation formula
using the Jacobian in the appendix to this section makes the theorem plausible, as in
the case of the double integral.

EXAMPLE 1 Evaluate I =

$

Dxyz

x2 dV , where Dxyz is the subset of R3 bounded by the surfaces

xy = 1, xy = 3, and the planes y + z = −1, y + z = 0, x + y + z = 1 and x + y + z = 2.

Solution: This solid is difficult to draw, but one can visualize it, since it is bounded
by level surfaces of three functions, namely

xy, y + z, and x + y + z
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Thus, the solid Dxyz is described by the inequalities

1 ≤ xy ≤ 3, −1 ≤ y + z ≤ 0, 1 ≤ x + y + z ≤ 2 (14.2)

This suggests that we define a mapping

u = xy, v = y + z, w = x + y + z (14.3)

The Jacobian is

∂(u, v,w)

∂(x, y, z)
= det





y x 0
0 1 1
1 1 1




= x

By the Change of Variables Theorem,

I =

$

Dxyz

x2 dx dy dz =

$

Duvw

x2

∣
∣
∣
∣
∣

∂(x, y, z)

∂(u, v,w)

∣
∣
∣
∣
∣

du dv dw

By the inverse property of the Jacobian,

∂(x, y, z)

∂(u, v,w)
=

[

∂(u, v,w, )

∂(x, y, z)

]−1

=
1

x

It follows from the inequalities (14.2) that x > 0 on Dxyz. Thus, equation (14.3) gives

I =

$

Duvw

x du dv dw

The next step is to express the integrand x in terms of u, v, w. It follows from
equations (14.3) that x = w − v. Hence,

I =

∫

Duvw

(w − v) du dv dw (14.4)

The inequalities (14.2) imply that the image of the set Dxyz under the mapping (14.3)
is the rectangular block Duvw defined by

1 ≤ u ≤ 3, −1 ≤ v ≤ 0, 1 ≤ w ≤ 2

Therefore, we can write the triple integral (14.4) as an iterated integral, and since
Duvw is rectangular, the order is immaterial:

I =

2∫

1

0∫

−1

3∫

1

(w − v) du dv dw = · · · = 4
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EXERCISE 1 Verify the result
∂(u, v,w)

∂(x, y, z)
= x in Example 1.

EXERCISE 2 Find the volume of the solid bounded by the six planes x+y = 1, x+y = 2, x−y = −1,
x − y = 1, x + y + z = 0, x + y + z = 3.

In double integrals we saw that if there is symmetry about the origin it may be helpful
to evaluate the double integral using polar coordinates. Similarly, if we have sym-
metry about the z-axis or the origin in R3 it may be helpful to use our mappings to
cylindrical coordinates or spherical coordinates. Refer to Appendix B for an intro-
duction to these coordinate systems.

Triple Integrals in Cylindrical Coordinates

Recall that the mapping from Cartesian coordinates to cylindrical coordinates is

x = r cos θ, y = r sin θ, z = z

with r ≥ 0, 0 ≤ θ < 2π, and the Jacobian is
∂(x, y, z)

∂(r, θ, z)
= r (verify). Since we need

∂(x, y, z)

∂(r, θ, z)
! 0, we must again restrict r > 0. So for cylindrical coordinates, the

formula in the Change of Variables Theorem reads

$

Dxyz

f (x, y, z) dx dy dz =

$

Drθz

f (r cos θ, r sin θ, z)r dr dθ dz

EXAMPLE 2 A wedge is cut from the cylinder x2 + y2 = b2, by the planes z = 0 and z = ky, where
b and k are positive constants, and y is assumed to be non-negative. Find the volume
of the wedge.

Solution: The volume V is given by

V =

$

R

1 dV

In cylindrical coordinates we have the cylinder r = b,
the plane z = 0 and the plane z = kr sin θ. Hence, the
solid is described by

0 ≤ z ≤ kr sin θ, 0 ≤ r ≤ b, 0 ≤ θ ≤ π x

z

y
θ = π

Drθ

R

θ = 0
r = b

zu = ky

zl = 0
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Using the Change of Variables Theorem gives

V =

π∫

0

b∫

0

kr sin θ∫

0

r dz dr dθ =

∫ π

0

∫ b

0

kr2 sin θ dr dθ

=

∫ π

0

1

3
kb3 sin θ dθ

=
2

3
kb3

EXERCISE 3 The density µ of the contents of a cylindrical drum defined by

x2 + y2 ≤ 1 and 0 ≤ z ≤ 2

is given by

µ =
k(2 − z)

1 + x2 + y2

where k is constant. Find the total mass.

EXERCISE 4 Calculate the volume of the solid enclosed by the paraboloid z = x2+y2 and the lower
part of the cone (z − 2)2 = x2 + y2.

Triple Integrals in Spherical Coordinates

Recall that the mapping from spherical coordinates to Cartesian coordinates are

x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ

with ρ ≥ 0, 0 ≤ φ ≤ π, 0 ≤ θ < 2π. The Jacobian is

∂(x, y, z)

∂(ρ, θ, φ)
= ρ2 sin φ

EXERCISE 5 Verify that
∂(x, y, z)

∂(ρ, θ, φ)
= ρ2 sin φ.

Thus, for spherical coordinates, we must restrict ρ > 0 and 0 < φ < π so that the
Jacobian is non-zero and the mapping is one-to-one. Observe that this means we are
not just removing one point, but the entire z-axis. However, this still will not affect
our result as the triple integral over the z-axis is 0. Hence, the Change of Variables
Theorem in spherical coordinates reads:

$

Dxyz

f (x, y, z)dV =

$

Dρθφ

f (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ)ρ2 sin φ dρdθdφ
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EXAMPLE 3 Evaluate

$

D

1

x2 + y2 + z2
dV where D is the spherical shell between the spheres of

radius a and b centered on the origin (a < b).

Solution: You would not succeed in evaluating this triple integral as an iterated inte-
gral in terms of x, y, and z. However, if you use spherical coordinates, the calculation
is simple. In terms of spherical coordinates ρ, φ, θ, the set D is defined by

a ≤ ρ ≤ b, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π

Using the Change of Variables Theorem gives

$

D

1

x2 + y2 + z2
dV =

2π∫

0

π∫

0

b∫

a

1

ρ2
(ρ2 sin φ) dρ dφ dθ = · · · = 4π(b − a)

EXERCISE 6 Calculate the volume of the solid ellipsoid

x2

a2
+

y2

b2
+

z2

c2
≤ 1

where a, b, c are positive constants.

Hint: Make the change of variables (x, y, z) = (au, bv, cw), and then transform the
ellipsoid into a solid sphere.

EXERCISE 7 A conical drill bit, angle α, drills into a solid
sphere of radius b until the tip reaches the center.
Show that the volume of the solid removed is

V(α) =
2

3
πb3(1 − cosα)

x

z

α

cross section y = 0

Appendix: The Jacobian in 3-D

At the end of Section 12.2, we generalized the concept of a mapping F from R2 to
R2 to a mapping F from Rn to Rm, and defined the m × n derivative matrix DF(x). If
m = n, then we can define the Jacobian of the mapping, as follows.
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DEFINITION

Jacobian

For a mapping defined by

u = F(x) =
(

f1(x), . . . , fn(x)
)

where u = (u1, . . . , un) and x = (x1, . . . , xn), the Jacobian of F is

∂(u1, . . . , un)

∂(x1, . . . , xn)
= det[DF(x, y)] = det





∂ f1
∂x1
· · · ∂ f1

∂xn

...
...

∂ fn
∂x1
· · · ∂ fn

∂xn





We note that the inverse property of the Jacobian also generalizes:

∂(x1, . . . , xn)

∂(u1, . . . , un)
=

1

∂(u1, . . . , un)

∂(x1, . . . , xn)

where
∂(x1, . . . , xn)

∂(u1, . . . , un)
is the Jacobian of the inverse mapping of F.

Geometrical Interpretation of the Jacobian in 3-D

The interpretation is based on the following result from linear algebra. The volume
of a parallelepiped which is defined by three vectors





a1

a2

a3




,





b1

b2

b3




, and





c1

c2

c3




is given by

Volume =

∣
∣
∣
∣
∣
∣
∣
∣

det





a1 b1 c1

a2 b2 c2

a3 b3 c3





∣
∣
∣
∣
∣
∣
∣
∣ x

y

z

a bc

Consider a mapping defined by

(u, v,w) = F(x, y, z) =
(

f (x, y, z), g(x, y, z), h(x, y, z)
)

The image of a small rectangular block of volume ∆Vxyz = ∆x∆y∆z in xyz-space
under this mapping can be approximated by a small parallelepiped in uvw-space.
As in the 2-D case we can use the linear approximation and the formula above to
approximate the volume ∆Vuvw of the image. The result is

∆Vuvw ≈
∣
∣
∣
∣
∣

∂(u, v,w)

∂(x, y, z)

∣
∣
∣
∣
∣
∆Vxyz

where
∂(u, v,w)

∂(x, y, z)
is the Jacobian of the mapping F evaluated at P.
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Chapter 14 Problem Set

1. Write

$

D

f (x, y, z) dV as an iterated integral, for

each 3-D region D.

(a) D is the rectangular box defined by |x − 1| ≤
2, |y| ≤ 3, |z + 1| ≤ 1.

(b) D is the cylindrical solid defined by x2

a2 +
y2

b2 ≤
1, |z − 2| ≤ 1.

(c) D is the tetrahedron with vertices (a, 0, 0),
(0, b, 0), (0, 0, c) and (0, 0,−c).

(d) D is the “ice-cream cone” bounded by x2 +

y2 = 1
4
z2, z ≥ 0 and the hemisphere defined by

x2 + y2 + z2 = 25, z > 0.

(e) D is the solid bounded by the paraboloid
y = 1 − x2 − z2, and the hemisphere defined by
x2 + y2 + z2 = 3, y < 0 in D, y < 1 − x2 − z2.

2. Consider the triple integral

$

D

ex dV , where D is the

3-d region bounded by the planes x = 0, y = 0, z = 0
and x + y + z = 1. Write it as an iterated integral in
the order z, y, x. Notice that the order x, z, y will give
a simpler integration. Evaluate the integral using this
order.

3. Evaluate
%

D

x2 + y dV where D is the region bounded

by x + y + z = 2, z = 2, x = 1 and y = x.

4. Evaluate
%

Dxyz

ex−y+z dV , where Dxyz is bounded by the

planes x − y + z = 2, x − y + z = 3, x + 2y = −1,
x + 2y = 1, x − z = 0 and x − z = 2.

5. Let 0 < a < b and 0 < c < d. Show that the region
D in the first quadrant bounded by ay = x3, by = x3,
cx = y3 and dx = y3 has area 1

2
(
√

b −
√

a)(
√

d −
√

c).

6. Evaluate the following integrals.

(a)
%

D

(x2 + y2 + z2)−3/2 dV where D is the bounded

by x2 + y2 + z2 = a2 and x2 + y2 + z2 = b2 with
0 < b < a.

(b)

∫ 1

0

∫
√

1−x2

0

∫
√

2−x2−y2

√
x2+y2

dz dy dx.

(c)

∫ 1

0

∫
√

1−y2

0

∫
√

3

√
3x2+3y2

dz dx dy.

7. Find the volume of the region bounded by the surfaces.

(a) z =
√

x2 + y2, x2 + y2 = 4, z = 0.

(b) x + y + z = 2, x2 + y2 = 1, z = 0.

(c) Inside x2 + y2 + z2 = 2 but outside x2 + y2 = 1.

8. Let D be the region in the first octant bounded by the
planes x = z, y = z, and z = 1. Consider

%

D
1
3
z3 dV .

(a) Write the triple integral as an iterated integral in
the order dz dy dx.

(b) Write the triple integral as an iterated integral in
the order dx dy dz and evaluate the integral using
this order.

9. Describe the 3-d region of integration for the iterated
integral

1∫

y=0

1−y
∫

x=y−1

∫
√

(1−y)2−x2

z=−
√

(1−y)2−x2

f (x, y, z) dz dx dy

and find the limits when the order of integration is y, x,
z.

10. The temperature at points in the cube

C = {(x, y, z) | |x| ≤ 1, |y| ≤ 1, |z| ≤ 1}

is 100r2, where r is the distance to the origin. Find the
average temperature. At what points of the cube does
the temperature equal the average temperature?

11. Determine the volume bounded by the cone z =

2
√

x2 + y2 and the paraboloid z = 1 − 8(x2 + y2).

12. Use spherical coordinates to evaluate

$

D

(x2 + y2 +

z2)−3/2 dV, where D is the solid bounded by the spheres
x2 + y2 + z2 = a2 and x2 + y2 + z2 = b2, with 0 < b < a.

13. Evaluate the following triple integrals by transforming
to spherical coordinates:

(a)

∫ 1

0

∫
√

1−x2

0

∫
√

2−x2−y2

√
x2+y2

dz dy dx

(b)

∫ 1

0

∫
√

1−y2

0

∫
√

3

√
3x2+3y2

dz dx dy

14. Calculate the volume enclosed by the cone z2 = x2+y2

and the plane z = h > 0, first using cylindrical coordi-
nates, and then using spherical coordinates.

15. Find the mass inside the sphere x2 + y2 + z2 = 1,
if the density is proportional to (i) the distance from
the z-axis (ii) the distance from the xy-plane. Think
about both spherical and cylindrical coordinates, and
use whichever is simpler.

16. Show that the volume V which lies inside the sphere
x2 + y2 + (z − a)2 = a2 and outside the sphere
x2 + y2 + z2 = 4k2a2, where k is a constant, 0 < k < 1,
is given by

V =
4π

3
a3(1 − 4k3 + 3k4)

17. Let V denote the volume of the first octant region
bounded by the coordinate planes and the parabolic
cylinders

a2y = b(a2 − x2), a2z = c(a2 − x2), a, b, c > 0

Show that V = 8abc/15.
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18. Let V denote the volume of the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1. Find V by performing a transfor-

mation, but without integrating.

19. Suppose that a hemispherical tank (with the flat part on
the ground) with radius R is partially filled with water,
so that the depth of the water is h. Find the volume of
water in the tank. Consider spherical and cylindrical
coordinates before trying to evaluate; one of them will
be easier to use.

20. A glacier which occupies the region

−
√

10−2 − x2 < z < 0

moves parallel to the y-axis with velocity in km/year
given by

v(x, z) = 10−3[1 − 102(x2 + z2)]

Find the volume of ice V moved through the xz-plane
in a year (distances are in kilometers).

21. Let Dxyz be the parallelopiped bounded by the planes
x − y + z = 2, x − y + z = 3, x + 2y = −1, x + 2y = 1,
x − z = 0, x − z = 2. Evaluate

$

Dxyz

ex−y+z dV

22. Consider the region D in the first octant enclosed by
the six surfaces

ay = x3, by = x3, cx = y3, dx = y3, z = 0, z = 1

where a, b, c, d are constants with 0 < a < b,
0 < c < d. Show that the volume of D equals
1
2

(√
b −
√

a
) (√

d −
√

c
)

.

23. (a) The density of a spherical star of radius b depends

on the distance r =
√

x2 + y2 + z2 from the centre
according to ρ = f (r), where f is a positive, con-
tinuous function of one variable. Write the mass
M of the star as a triple integral. Then show that

M = 4π

∫ b

0

r2 f (r) dr

(b) The density of a spherical star of radius b is pro-

portional to
b3

b3 + r3
, where r is the distance to

the centre. At what points does the density equal
the average density?

24. A spherical star of radius b has a core of radius 1
2
b with

constant density ρ0 kg/m3. The density of the outer
shell is proportional to 1

r
, where r is the distance to the

centre. If the density is a continuous function of r, for
0 ≤ r ≤ b, find the total mass of the star.

25.* The tetrahedron with vertices (0, 0, 0), (a, 0, 0), (0, b, 0)
and (0, 0, c) is to be sliced into n pieces of equal volume
by planes parallel to the inclined face. Where should
the slices be made?

26.* Calculate the average distance of the point (0,0,c),
where c ≥ 1, from the set of all points in the solid
sphere x2 + y2 + z2 ≤ 1.

27.* A 3-sphere of radius b in R4 is defined by the equation

x2
1 + x2

2 + x2
3 + x2

4 = b2

Find the “volume” enclosed by a 3-sphere of radius b.

28.* Find the volume of the region in R3 which is inside
of all of the cylinders x2 + y2 = 1, x2 + z2 = 1, and
y2 + z2 = 1. Hint: The region is not a sphere!
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Implicitly Defined Functions

Implicit Differentiation

An equation of the form
f (x, y) = 0 (A.1)

defines a relationship between the two variables x and y. If

y = g(x)

is a solution of equation (A.1), i.e.

f (x, g(x)) = 0 (A.2)

for all x in some interval I, we say that the function g is defined implicitly by equa-
tion (A.1).

e.g. the functions y =
√

1 − x2 and y = −
√

1 − x2 are defined implicitly by the
equation x2 + y2 − 1 = 0.

In general, given an equation of the form (A.1), it is not possible to solve for y in
terms of x to obtain the function g(x) explicitly. However it is easy to calculate the
derivatives of g by differentiating equation (A.2) with respect to x, a process referred
to as implicit differentiation. In this way one can find the linear approximation and
second degree Taylor polynomial of g at a suitable reference point.

EXAMPLE 1 The equation
y3 − y + x = 0 (3)

defines y implicitly as a function of x, y = g(x), with g(0) = 1. Find the linear
approximation and second degree Taylor polynomial of g at the point x = 0.

Solution: Differentiate equation (3) with respect to x, treating y as a function of x:

3y2 dy

dx
−

dy

dx
+ 1 = 0. (4)
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Evaluate this at the point (x, y) = (0, 1), obtaining
dy

dx
= − 1

2
, and hence g′(0) = − 1

2
.

Since g(0) = 1, the linear approximation of g at 0 is

L0(x) = 1 −
1

2
x.

Differentiate equation (4) with respect to x:

3y2 d2y

dx2
+ 6y

(

dy

dx

)2

−
d2y

dx2
= 0.

Evaluate this at the point (x, y) = (0, 1) obtaining
d2y

dx2
= − 3

4
, and hence g′′(0) = − 3

4
.

The second degree Taylor polynomial of g at 0 is

P2,0(x) = 1 −
1

2
x −

3

8
x2.

In this way, we can obtain information about the implicitly defined function g:

g(x) ≈ 1 −
1

2
x −

3

8
x2,

for x sufficiently close to 0.

EXERCISE 1 The equation
xy − sin y = 0

defines y implicitly as a function of x, y = g(x), with g(0) = π. Find the linear
approximation of g at x = 0.

If the function y = g(x) is defined implicitly by the equation f (x, y) = 0, where f
has continuous partials, one can derive a formula for g′(x) in terms of the partial
derivatives of f . We have

f (x, g(x)) = 0

for all x in some interval. This equation states that the composite function f (x, g(x))
is the zero function. Thus

d

dx
f (x, g(x)) = 0

Use the Chain Rule to expand this derivative, obtaining

fx(x, g(x)) + fy(x, g(x))g′(x) = 0

If fy(x, g(x)) ! 0, we can solve for g′(x),

g′(x) = −
fx(x, g(x))

fy(x, g(x))
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It is not necessary to memorize this formula. What is of interest is its structure. In
Leibniz notation, this equation reads

dy

dx
= −

∂ f

∂x

∂ f

∂y

The minus sign if puzzling — one cannot think of
“canceling the ∂ f ’s”, as is sometimes possible in sin-
gle variable calculus.
There is a simple geometrical explanation, however.

In the diagram,
∂ f

∂x
> 0 and

∂ f

∂y
> 0, based on the di-

rection of the gradient vector, but
dy

dx
< 0, based on

the slope of the tangent line.

EXERCISE 2 The equation
f (x, y) = 0

defines y implicitly as a function of x, y = g(x). If f (−1, 3) = 0 and ∇ f (−1, 3) =
(3, 5), find g′(−1). Assume that f has continuous partial derivatives.

Generalization

A function g(x, y) can be defined implicitly by an equation of the form f (x, y, z) =
0 One can use implicit differentiation to calculate the partial derivatives of g. We
assume that f has continuous partial derivatives.

EXAMPLE 2 The equation f (x, y, z) = 0 determines z implicitly as a function of x and y, z =
g(x, y). If f (2,−1, 1) = 0, and ∇ f (2,−1, 1) = (4,−6, 2), find the linear approximation
of g at (−1, 1).

Solution: We have
f (x, y, g(x, y)) = 0 (5)

for all (x, y) in some subset of R2. Differentiate equation (5) with respect to x, treating
y as a constant:

∂

∂x
f (x, y, g(x, y)) = 0

Expand the left side using the Chain Rule

fx(x, y, g(x, y))(1) + fy(x, y, g(x, y))(0) + fz(x, y, g(x, y))gx(x, y) = 0

Evaluate at (x, y) = (2,−1), with g(2,−1) = 1:

fx(2,−1, 1) + fz(2,−1, 1)gx(2,−1) = 0
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Since ∇ f (2,−1, 1) = (4,−6, 2), we obtain

4 + 2gx(2,−1) = 0

and so
gx(2,−1) = −2

Similarly one can show that
gy(2,−1) = 3

The linear approximation of g at (2,−1) is:

L(2,−1)(x, y) = 1 − 2(x − 2) + 3(y + 1)

EXERCISE 3 Referring to Example 2, show that gy(2,−1) = 3.

The Implicit Function Theorem

Above we showed that the derivatives of a function y = g(x) that is defined implicitly
by an equation f (x, y) = 0, can be calculated in a routine manner, even though the
function g cannot be solved for explicitly.

In this section we show how to obtain more information about the set of points (x, y)
which satisfy an equation f (x, y) = 0, called the null set of f , and denoted by N( f ):

N( f ) = {(x, y) | f (x, y) = 0}

This set is simply the level curve of f which corresponds to the constant value1 0.

We begin by considering a number of simple examples which illustrate that it is
difficult to make any general statements about the null set of f , even if f is a “well-
behaved” function. In all the examples, f is a polynomial function, and hence has
continuous partial derivatives of all orders.

(i) f (x, y) = x2 − y

N( f ) is the graph of a differentiable function

y = g(x) = x2

1It is not important that we have used 0 as the constant value, since the level set f (x, y) = k, is the
null set of the function g defined by g(x, y) = f (x, y) − k.
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(ii) f (x, y) = y3 − y − x

N( f ) is a smooth curve, which is not the graph
of a function y = g(x).

(iii) f (x, y) = x2 − y3

N( f ) is the graph of a non-differentiable func-
tion

y = g(x) = x2/3

Note that g′(0) does not exist.

(iv) f (x, y) = −x2 + x3 + y2

N( f ) is a self-intersecting curve (it could be the
path of an electron in a magnetic field).

(v) f (x, y) = x2 − y2

N( f ) consists of two intersecting curves.

(vi) f (x, y) = (x − y)2 − 1

N( f ) consists of two disjoint curves.

(vii) f (x, y) = x2 + y2

N( f ) is a single point (0, 0).

(viii) f (x, y) = x2 + y2 + 1.

N( f ) is the empty set, i.e., 0 does not belong to the range of f .
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REMARK

In general, for a given x-value, the equation f (x, y) = 0 does not have a unique
solution for y, and may not have any solution. However, by studying the sketches,
we see that apart from a few exceptional points, for each point (a, b) ∈ N( f ) there
is a neighborhood of (a, b) such that when restricted to this neighborhood, N( f ) is
the graph of a differentiable function y = g(x). The function y = g(x) represents the
unique solution of the equation f (x, y) = 0 in this neighborhood.

The question is: how can we locate the exceptional points if we don’t have a picture
of the null set N( f )?

The answer is: by studying the gradient vector ∇ f . Here’s how:

If a level set f (x, y) = 0 is a smooth curve, and (a, b) lies on the curve (i.e. f (a, b) =
0), then ∇ f (a, b) is normal to the tangent line to the curve at (a, b). Thus, at the
exceptional points A and B in example (ii), and A in example (iv), at which the
tangent line is vertical, ∇ f = ( fx, 0) i.e. fy = 0. At the exceptional point (0, 0) in
examples (iii), (iv), (v) and (vii), where the level set f (x, y) = 0 is not a smooth
curve, we have ∇ f = (0, 0), as can be verified explicitly (exercise).

The examples thus suggest that if fy(a, b) ! 0, then the level set f (x, y) = 0 is the
graph of a function y = g(x) in some neighborhood of (a, b), or equivalently that the
equation f (x, y) = 0 has a unique solution y = g(x). We now state this very important
theorem.

THEOREM 1 (Implicit Function Theorem)

Let f (x, y) ∈ C1 in a neighborhood of (a, b). If f (a, b) = 0 and fy(a, b) ! 0, then
there exists a neighborhood of (a, b) in which the equation f (x, y) = 0 has a unique
solution for y in terms of x, y = g(x), where g has a continuous derivative.

REMARK

The roles of the variables x and y can be interchanged. If the hypothesis fy(a, b) ! 0
is replaced by fx(a, b) ! 0, the conclusion is that the equation f (x, y) = 0 has a unique
solution for x,

x = h(y)
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The theorem and comment lead to the following:

COROLLARY 2 If f (x, y) ∈ C1, and
f (a, b) = 0, ∇ f (a, b) ! (0, 0)

(i.e. at least one partial derivative non-zero at (a, b)), then near the point (a, b), the
equation f (x, y) = 0 describes a smooth curve, whose tangent line at (a, b) is or-
thogonal to ∇ f (a, b). If fy(a, b) ! 0 then the curve can be written uniquely in the
form

y = g(x)

and if fx(a, b) ! 0, it can be written uniquely in the form

x = h(y)

In the sketch below, we illustrate the Implicit Function Theorem using the function
f (x, y) = −x2 + x3 + y2 in example (iv).

A: ∇ f (0, 0) = (0, 0).

Not a smooth curve in this neighborhood.
There is not a unique solution.

B: ∇ f (2
3
, 2

3
√

3
= (0, 4

3
√

3
.

Smooth curve in this neighborhood. Unique
solution y = g(x).

C: ∇ f (1, 0) = (1, 0).

Smooth curve in this neighborhood. Unique solution x = h(y).

D: ∇ f (3
4
,− 3

8
) = ( 3

16
,− 3

4
).

Smooth curve in this neighborhood. Unique solution y = g(x) and x = h(y).

EXERCISE 4 a. Prove that the equation f (x, y) = 2x2 − 2y2 + y4 = 0 has a unique solution y = g(x)

near the point
( √

7

4
√

2
, 1

2

)

.

b. At what points is the tangent line to the curve f (x, y) = 0 horizontal/vertical?

c. Use b. to sketch the set defined by f (x, y) = 0.

It is a self-intersecting curve with a familiar shape.
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Generalization

The considerations of this section can be applied to an equation of the form

f (x, y, z) = 0

The geometric interpretation is in terms of surfaces in R3.

We first state the Implicit Function Theorem and its corollary for functions of three-
variables f (x, y, z).

THEOREM 3 (Implicit Function Theorem)

Let f (x, y, z) ∈ C1 in a neighborhood of (a, b, c). If f (a, b, c) = 0 and fz(a, b, c) ! 0,
then there exists a neighborhood of (a, b, c) in which the equation f (x, y, z) = 0 has a
unique solution for z in terms of x and y, z = g(x, y), where g ∈ C1.

COROLLARY 4 If f (x, y, z) has continuous partial derivatives, and

f (a, b, c) = 0, ∇ f (a, b, c) ! (0, 0, 0)

(i.e. at least one partial derivative is non-zero at (a, b, c)), then near the point (a, b, c),
the equation f (x, y, z) = 0 describes a smooth surface in R3 whose tangent plane at
(a, b, c) is orthogonal to ∇ f (a, b, c).

If fz(a, b, c) ! 0, then the surface can be described uniquely in the form

z = g(x, y)

near the point (a, b, c). In general, however, the equation f (x, y, z) = 0 will not be the
graph z = g(x, y) of one function g.

EXAMPLE 3 f (x, y, z) = x2 + y2 + z2 − 1 = 0 represents a sphere, and can thus be described by the
graphs of two functions,

z =
√

1 − x2 − y2 and z = −
√

1 − x2 − y2

REMARK

When applying the Implicit Function Theorem it is easy to remember which partial
derivative of f must be non-zero: it is the partial derivative with respect to the variable
for which one wishes to solve.
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EXAMPLE 4 Prove that the equation

F(x, y, z) = yez + xz − x2 − y2 = 0

has a unique solution for x in terms of y and z in a neighborhood of (0, 2, ln 2).

Solution: F has continuous partials for all (x, y, z) ∈ R3 by inspection. In addition

F(0, 2, ln 2) = 0. The essential condition is that
∂F

∂x
(0, 2, ln 2) ! 0.

This is easily verified, since
∂F

∂x
= z − 2x.

EXAMPLE 5 The equation

f (x, y, z) = z3 − xz + y = 0 (A.3)

describes a smooth surface with a “fold”, like a
wave on the point of breaking. Show that the curve
x = (3t2, 2t3, t), t ∈ R lies on the surface and that the
tangent plane is vertical at each point of this curve.

Solution: Firstly, show that f (x, y, z) is zero along the given curve:

f (3t2, 2t3, t) = t3 − (3t2)(t) + 2t3 = 0

for all t ∈ R. Thus, the curve lies in the surface.

The gradient vector is ∇ f (x, y, z) = (−z, 1, 3z2 − x).

Evaluate this vector on the curve:

∇ f (3t2, 2t3, t) = (−t, 1, 3t2 − 3t2) = (−t, 1, 0)

This shows that ∇ f is parallel to the xy-plane at points on the curve. Since ∇ f is
orthogonal to the tangent plane of the surface f (x, y, z) = 0, it follows that the tangent
plane of the surface f (x, y, z) = 0 is vertical at points on the given curve.

REMARK

The fact that equation (A.3) does describe a smooth surface follows from the fact
that (A.3) can be solved for y by inspection: y = g(x, z) = xz − z3 and that g has
continuous partials.

EXERCISE 5 In order to verify the shape of the surface given by equation (A.3), sketch some
typical cross-sections x = a, given by z3 − az+ y = 0 in the cases a > 0, a = 0, a < 0.
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Coordinate Systems

A coordinate system is a system for representing the location of a point in a space
by an ordered n-tuple. We call the elements of the n-tuple the coordinates of the
point.

We are used to using the Cartesian coordinate system in which the location of the
point is represented by the directed distance from a set of perpendicular axes which
all intersect at a point O. However, you may also be used to other coordinate systems.
For example, the geographic coordinate system represents location on the earth by
longitude, latitude and altitude.

We will now look at three other important coordinate systems: polar coordinates,
cylindrical coordinates, and spherical coordinates.

B.1 Polar Coordinates

As in all coordinate systems, we must have a frame
of reference for our coordinate system. So, in a plane
we choose a point O called the pole (or origin). From
O we draw a ray called the polar axis. Generally, the
polar axis is drawn horizontally to the right to match
the positive x-axis in Cartesian coordinates. O

θ

P(r, θ)

r

polar axis

Let P be any point in the plane. We will represent the position of P by the ordered
pair (r, θ) where r ≥ 0 is the length of the line OP and θ is the angle between the
polar axis and OP. We call r and θ the polar coordinates of P.

199
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REMARKS

1. We assume, as usual, that an angle θ is considered positive if measured in the
counterclockwise direction from the polar axis and negative if measured in the
clockwise direction.

2. We represent the point O by the polar coordinates (0, θ) for any value of θ.

3. We are restricting r to be non-negative to coincide with the interpretation of r
as distance. Many textbooks do not put this restriction on r.

4. Since we use the distance r from the pole in our representation, polar coor-
dinates are suited for solving problems in which there is symmetry about the
pole.

EXAMPLE 1 Plot the points
(

1,
π

4

)

and

(

2,
5π

6

)

in polar coordinates.

Solution:

O

π
4

(

1, π
4

)

1

polar axis
O

5π
6

(

2, 5π
6

)

2
polar axis

There is one important difference between polar coordinates and Cartesian coordi-
nates. In Cartesian coordinates each point has a unique representation (x, y). How-
ever, observe that a point (r, θ) in polar coordinates can have infinitely many repre-
sentations. In particular,

(r, θ) = (r, θ + 2πk), k ∈ Z

Relationship to Cartesian Coordinates

If we now place the pole O at the origin of the Cartesian plane and lie the polar axis
along the positive x-axis, we can find a relationship between the coordinates of a
point P in the two coordinate systems. In particular, we see from the diagram that

x = r cos θ, r =
√

x2 + y2

y = r sin θ, tan θ =
y

x
(B.1)

x

y

x

y

O

θ

P (x, y) = P (r, θ)

r
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EXAMPLE 2 Convert the points
(

2,−
π

3

)

and

(

1,
3π

4

)

from polar coordinates to Cartesian coordi-

nates.

Solution: We have x = 2 cos−
π

3
= 1 and y = 2 sin−

π

3
= −
√

3. Hence, the point is

(1,−
√

3) in Cartesian coordinates.

We have x = cos
3π

4
= −

1
√

2
and y = sin

3π

4
=

1
√

2
. So, the point has Cartesian

coordinates

(

−
1
√

2
,

1
√

2

)

.

EXAMPLE 3 Convert the point (1, 1) from Cartesian coordinates to polar coordinates.

Solution: We have x = 1 and y = 1, so r =
√

12 + 12 =
√

2 and tan θ = 1. Since x
and y are both positive the point is in quadrant 1, and hence

θ =
π

4
+ 2πk, k ∈ Z

Therefore, we get the polar coordinate representations
(√

2,
π

4
+ 2πk

)

, k ∈ Z.

Often we do not need to find all possible polar representations for a point. Thus, we
further restrict ourselves to a range of θ (such as 0 ≤ θ < 2π or −π < θ ≤ π) which
gives unique representation.

EXAMPLE 4 Convert the point (−1,
√

3) from Cartesian coordinates to polar coordinates with
0 ≤ θ < 2π.

Solution: We have x = −1 and y =
√

3, so r =

√

(−1)2 + (
√

3)2 = 2 and

tan θ = −
√

3. Since θ is in the second quadrant we get θ =
2

3
π. Hence, the point has

polar representation

(

2,
2

3
π

)

.

REMARK

The equation tan θ =
y

x
does not uniquely determine θ, since over 0 ≤ θ ≤ 2π each

value of tan θ occurs twice. One must be careful to choose the θ which lies in the
correct quadrant.
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Graphs in Polar Coordinates

The graph of an explicitly defined polar equation r = f (θ) or θ = f (r), or an implicitly
defined polar equation f (r, θ) = 0, is a curve that consists of all points that have at
least one polar representation (r, θ) that satisfies the equation of the curve.

EXAMPLE 5 Sketch the polar equation r = 1.

Solution: This is the curve which consists of all points
(r, θ) = (1, θ), θ ∈ R. Observe that this is all points that
have distance 1 from the origin. Hence, we get a circle
of radius 1.

x

y

1

EXERCISE 1 Sketch the polar equation θ =
π

4
.

EXAMPLE 6 Sketch the polar equation r =
1

2
θ, 0 ≤ θ ≤ 2π.

Solution: One way to try to sketch a curve is
to make a table of values and plot the points
for various θ, however this is quite tedious.
Instead, let’s consider sketching the curve as
if it was given in Cartesian coordinates in the
rθ-plane:

θ

π

4

π

2

3 π

4

π 5 π

4

3 π

2

7 π

4

2 π

0

1

2

3

Essentially we have created a table of in-
finitely many values which allows us to see
how r grows as θ increases from 0 to 2π. Fi-
nally, we sketch the given curve in the xy-
plane where r is the distance to the origin
and θ is the angle measured counterclockwise
from the x-axis. We see that the distance from
the origin grows linearly as we increase the
angle; we get a spiral:

0 1 2 3

0

π

4

π

2

3 π

4

π

5 π

4

3 π

2

7 π

4

REMARK

The polar equation r = eθ gives a logarithmic spiral which often appears in nature.
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EXAMPLE 7 Sketch the polar equation r = 1 + sin θ.

Solution: To sketch this equation we first sketch the curve in Cartesian coordinates
in the rθ-plane and use this graph to plot points in the xy-plane.

r

θ

1

2

π
2 π 3π

2 2π

Observe from the diagram that as θ increases from 0 to
π

2
the radius increases from

1 to 2. Then when θ increases from
π

2
to π the radius decreases from 2 to 1. As θ

increases from π to
3π

2
we get the radius decreases from 1 to 0, and as θ increases

from
3π

2
to 2π the radius increases from 0 to 1. Each of these steps are shown below.

The final curve is called a cardioid.

x

y

1

2

−1
x

y

1

2

−1
x

y

1

2

−1
x

y

1

2

−1

EXAMPLE 8 Sketch the polar equation r = cos θ.

Solution: We first sketch the curve in Cartesian coordinates in the rθ-plane.

r

θ

1

−1

π
2

π 3π
2

2π

We see that as θ increases from 0 to π
2

the radius decreases

from 1 to 0. For values of θ from
π

2
to

3π

2
the radius is

negative, thus we do not draw any points since we have

made the restriction that r ≥ 0. As θ moves from
3π

2
to

2π the radius increases from 0 to 1.

x

y

1
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EXERCISE 2 Sketch the polar equations r = sin θ and r = 1 − 2 cos θ.

We have seen above that we can use equations (B.1) to convert points between the
coordinate systems. Thus, we can also use these equations to convert equations of
curves between the two coordinate systems.

EXAMPLE 9 Convert the equation r = cos θ to Cartesian coordinates.

Solution: Since r2 = x2 + y2 and x = r cos θ, we get

r = cos θ

r2 = r cos θ

x2 + y2 = x
(

x −
1

2

)2

+ y2 =
1

4
.

x

y

1

(
1
2
, 0

)

1
2

Which is a circle of radius
1

2
centered at

(

1

2
, 0

)

as we drew in Example 8.

EXAMPLE 10 Convert the equation of the curve (x2 + y2)3/2 = 2xy to polar coordinates.

Solution: Since x = r cos θ and y = r sin θ we get

(x2 + y2)3/2 = 2xy

r3 = 2(r cos θ)(r sin θ)

r3 = r2 sin 2θ

r = sin 2θ

Notice that the last simplification is only valid since the pole r = 0, is still included
in the graph (the case where θ = π).

Observe that since we have the restriction r ≥ 0 we must also have sin 2θ ≥ 0. Hence,
we find that a domain of the function is

0 ≤ θ ≤
π

2
, π ≤ θ ≤

3π

2

EXERCISE 3 Convert the equation of the curve x2 − y2 = 1 to polar coordinates.
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Area in Polar Coordinates

We now wish to derive the formula for computing area between curves in Polar co-
ordinates. Clearly this will be a little different than before as it does not make sense
to use rectangles to find our area. In Polar coordinates, it is natural to use sectors of
a circle.

Recall that if θ1 and θ2, θ2 > θ1, are two angles in a circle of radius r, then the area
between them is

θ2 − θ1
2π

· πr2 =
1

2
r2(θ2 − θ1)

We now derive the area as before. We divide the region bounded by θ = a, θ = b and
r = f (θ) into subregions θ0, . . . , θn of equal difference ∆θ, then for each subregion θi,
0 ≤ i < n we pick some point θ∗i with θi ≤ θ∗i ≤ θi+1. We then form the sector between
θi and θi+1 with radius f (θ∗i ). The area of this sector is

1

2
[ f (θ∗i )]2∆θ

Hence, the area is approximately

n−1∑

i=0

1

2
[ f (θ∗i )]2∆θ

Thus, as we let the number of subdivisions go
to infinity and hence letting each of the ∆θi
tend to 0 we get

O

r = f (θ)

θiθi+1
f (θ∗i )

θ = aθ = b

polar axis

A = lim
‖∆θi‖→0

n−1∑

i=0

1

2
[ f (θ∗i )]2∆θ =

∫ b

a

1

2
[ f (θ)]2 dθ

EXAMPLE 11 Find the area inside the circle r = a.

Solution: We need θ to range from 0 to 2π to make the whole circle so we have

A =

∫ 2π

0

1

2
a2 dθ =

1

2
a2[2π − 0] = πa2

EXERCISE 4 Find the area inside the lemniscate r = 2
√

sin 2θ.
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ALGORITHM

To find the area between two curves in Polar coordinates, we use the same method
we used for doing this in Cartesian coordinates.

1. Find the points of intersections.
2. Graph the curves and split the desired region into easily integrable regions.
3. Integrate.

EXAMPLE 12 Find the area inside r = 2 sin(2θ), but outside r = 1.

Solution:

Setting the curves equal to each other we get

1 = 2 sin(2θ), hence 2θ =
π

6
or 2θ =

5π

6
.

Therefore, we want to integrate over the region
π

12
to

5π

12
. To find the shaded area, we will find

the area inside the lemniscate in the first quad-
rant and subtract off the area of the region that
is inside both the circle and the lemniscate. Fi-
nally, we will multiply by 2 for the symmetric
region in the third quadrant. We get

x

y

r = 2 sin(2θ)

r = 1

A = 2

(∫ 5π/12

π/12

1

2
(2 sin(2θ))2 dθ −

∫ 5π/12

π/12

1

2
(1)2 dθ

)

= · · · =
π

3
+

√
3

2

REMARK

Finding points of intersection can be tricky, especially at the pole/origin which does
not have a unique representation: (0, θ) for any θ represents the origin, so simply
setting expressions equal to each other may ‘miss’ that point. It is essential to sketch
the region when finding points of intersection.

EXERCISE 5 Find the area between the curves r = cos θ and r = sin θ.
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B.2 Cylindrical Coordinates

Observe that we can extend polar coordinates to 3-
dimensional space by introducing another axis, called the
axis of symmetry, through the pole perpendicular to the
polar plane. We then represent any point P in the space
by the cylindrical coordinates (r, θ, z) where r and θ are as
in polar coordinates and z is the height above (or below)
the polar plane. Thus, as in Polar coordinates, we have
the restrictions r ≥ 0, 0 ≤ θ < 2π (or −π < θ ≤ π).

z

O

θ

r
z

P(r, θ, z)

REMARK

Notation for cylindrical coordinates may vary from author to author. In particular,
in the sciences they generally use the Standard ISO 31-11 notation which gives the
cylindrical coordinates as (ρ, φ, z).

If we place the pole at the origin and the polar axis along the positive x-axis as in
polar coordinates and place the axis of symmetry along the z-axis we then can relate
a point P in cylindrical and Cartesian coordinates by

x = r cos θ, r =
√

x2 + y2

y = r sin θ, tan θ =
y

x
(B.2)

z = z, z = z

x

y

z

θ

r
z

P(x, y, z) = P(r, θ, z)

REMARK

Cylindrical coordinates are useful when there is symmetry about an axis. Thus, it is
sometimes desirable to lie the polar axis and axis of symmetry along different axes.
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EXAMPLE 1 Convert (2, 0, 0) and (0, π, 2) from cylindrical coordinates to Cartesian coordinates.

Solution: The first point has coordinates r = 2, θ = 0 and z = 0. Hence, x =
2 cos 0 = 2, y = 2 sin 0 = 0 and z = 0, so we the point in Cartesian coordinates is
(2, 0, 0).

The second point has coordinates r = 0, θ = π, and z = 2. Since, r = 0 we get
x = y = 0 and so the point in Cartesian coordinates is (0, 0, 2).

EXAMPLE 2 Convert (1, 1, 3) and (1,−
√

3, 1) from Cartesian coordinates to cylindrical coordi-
nates.

Solution: We have r =
√

12 + 12 =
√

2, tan θ = 1 which gives θ =
π

4
and z = 3.

Thus, in cylindrical coordinates the point is
(√

2,
π

4
, 3

)

.

We have z = 1, r =

√

12 + (−
√

3)2 = 2, tan θ =
−
√

3

1
which gives θ =

5π

3
since θ is

in the fourth quadrant. Hence, in cylindrical coordinates the point is

(

2,
5π

3
, 1

)

.

Graphs in Cylindrical Coordinates

As with functions z = f (x, y), the graphs of functions z = f (r, θ), or more generally,
f (r, θ, z) = 0 are surfaces in R3.

EXAMPLE 3 Sketch the graph of r = 1 in cylindrical
coordinates.

Solution: We know that r = 1 gives a circle of radius
1 in polar coordinates. Thus, in cylindrical coordi-
nates we have a circle of radius 1 at any value of z.
Hence, we have an infinite cylinder of radius 1.

x y

z

r = 1

EXERCISE 1 Sketch the graph of z = r2 in cylindrical coordinates.

As we did in polar coordinates, we can also transform the equations of curves
between the coordinates systems.
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EXAMPLE 4 Convert the equation z = r2 cos θ to Cartesian coordinates.

Solution: Using (B.2) we get z = x
√

x2 + y2.

EXERCISE 2 Find the equation of z =
y

√

x2 + y2
in cylindrical coordinates.

B.3 Spherical Coordinates

In 2-dimensional space, we saw that polar coordinates were useful for problems
which where symmetric about the origin. We now extend this idea to another 3-
dimensional coordinate system called spherical coordinates.

As we did in cylindrical coordinates, we will use the pole
O and polar axis from polar coordinates and draw another
axis z perpendicular to the polar plane.
Let P be any point in 3-dimensional space. We will rep-
resent P by the coordinates (ρ, φ, θ) where ρ ≥ 0 is the
length of the line OP, θ is the same angle as in cylindri-
cal coordinates, and φ is the angle between the positive
z-axis and the line OP.

z

O

θ

ρ

φ

P(ρ, φ, θ)

Since we are keeping the same interpretation of θ from cylindrical coordinates, it tells
us the orientation of P around the z-axis. Therefore, we only want φ to indicate the
“tilt” of the point with the z-axis. So, we restrict 0 ≤ φ ≤ π.

Thus, our restrictions in spherical coordinates are ρ ≥ 0, 0 ≤ θ < 2π (or −π < θ ≤ π)
and 0 ≤ φ ≤ π.

REMARK

The symbols used for spherical coordinates also vary from author to author as does
the order in which they are written. In mathematics, it is not uncommon to find ρ
replaced by r. The standard ISO 31-11 convention uses φ as the polar angle and θ as
the angle with the positive z-axis. Therefore, it is very important to understand which
notation is being used when reading an article.

From the diagram, we see that we can convert a point from Cartesian coordinates to
spherical coordinates with the equations:
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x = ρ sin φ cos θ, ρ =
√

x2 + y2 + z2

y = ρ sin φ sin θ, tan θ =
y

x
(B.3)

z = ρ cos φ, cos φ =
z

√

x2 + y2 + z2

x

y

z

θ

ρ

φ

P(x, y, z) = P(ρ, φ, θ)

EXAMPLE 1 Convert
(

1,
π

4
,
π

4

)

and

(

1,
π

4
,

5π

4

)

from spherical coordinates to Cartesian coordinates.

Solution: We get x = sin
π

4
cos
π

4
=

1

2
, y = sin

π

4
sin
π

4
=

1

2
, and z = cos

π

4
=

1
√

2
.

Therefore, the point has Cartesian coordinates

(

1

2
,

1

2
,

1
√

2

)

.

We get x = sin
π

4
cos

5π

4
= −

1

2
, y = sin

π

4
sin

5π

4
= −

1

2
, and z = cos

π

4
=

1
√

2
.

Therefore, the point has Cartesian coordinates

(

−
1

2
,−

1

2
,

1
√

2

)

.

EXAMPLE 2 Convert

(

1
√

2
,

1
√

2
,
√

3

)

and (−1,−1,−1) from Cartesian coordinates to spherical co-

ordinates.

Solution: We have ρ =

√
(

1
√

2

)2

+

(

1
√

2

)2

+
(√

3
)2
= 2, tan θ = 1 ⇒ θ =

π

4
since θ

is in the first quadrant and cos φ =

√
3

2
⇒ φ =

π

6
. Hence, in spherical coordinates

the point is
(

2,
π

6
,
π

4

)

.

We get ρ =
√

(−1)2 + (−1)2 + (−1)2 =
√

3, tan θ = 1 ⇒ θ =
5π

4
since θ is

the third quadrant, and cos φ =
−1
√

3
. Thus, the point in spherical coordinates is

(√
3, arccos

−1
√

3
,

5π

4

)

.

Observe from the above examples, how θ controls which quadrant the point is in (its
rotation around the z-axis) and φ only controls whether the point will be above or
below the xy-plane.
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Graphs in Spherical Coordinates

As with cylindrical coordinates, the graph of a function f (ρ, φ, θ) = 0 in spherical
coordinates gives a surface in R3.

EXAMPLE 3 Sketch ρ = 2.

Solution: Observe that this is the graph with
all points 2 units from the origin. Hence, it is
a sphere of radius 2.

x y

z

ρ = 2

ρ

EXAMPLE 4 Sketch φ =
π

4
.

Solution: First imagine a line which makes a
π
4

angle with the positive z-axis. Since there
is no restriction on θ, the graph of the surface
will be this line rotated around the positive z-
axis. Hence, we get a cone.

x

y

z

φ = π
4

π
4

As with the other coordinate systems, we also want to convert equations between
Cartesian and spherical coordinates.

EXAMPLE 5 Convert ρ = sin φ cos θ to Cartesian coordinates.

Solution: We first multiply both sides of the equation by ρ to get

ρ2 = ρ sin φ cos θ

Hence, we can apply (B.3) to get

x2 + y2 + z2 = x

(x −
1

2
)2 + y2 + z2 =

1

4
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EXAMPLE 6 Convert z2 = x2 + y2 to spherical coordinates.

Solution: We have

ρ2 cos2 φ = ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ

cos2 φ = sin2 φ(cos2 θ + sin2 θ)

tan2 φ = 1

Thus, tan φ = ±1, so we get φ =
π

4
or φ =

3π

4
. Observe that φ =

π

4
is the top-half of

the cone (as in Example 4) and φ =
3π

4
is the bottom-half of the cone.

EXERCISE 1 Convert x2 + y2 + z2 = 2x to spherical coordinates.

Appendix B Problem Set

1. Convert the following points from Cartesian coordi-
nates to polar coordinates with 0 ≤ θ < 2π.

(a) (−2, 2) (b) (
√

3,−1)

(c) (−1,−
√

3) (d) (2, 1)

2. Convert the following points from polar coordinates to
Cartesian coordinates.

(a) (2, π/3) (b) (3, 5π/6)
(c) (3, 2π/3) (d) (2,−π/6)

3. For each of the indicated regions in polar coordinates,
sketch the region and find the area.

(a) The region enclosed by r = sin θ

(b) The region enclosed by r = cos 2θ

4. For each of the indicated regions in polar coordinates,
sketch the region and find the area.

(a) Inside both r = 1 + 1 sin θ and r = 1 − 1 sin θ

(b) Inside r = sin θ and outside r = sin 2θ

5. For each of the indicated regions in polar coordinates,
sketch the region and find the area.

(a) The region enclosed by r = sin 3θ

(b) Inside both r = 2 + 2 cos θ and r = 2 − 2 cos θ

6. Convert the following equations in Cartesian coordi-
nates to cylindrical coordinates.

(a) z =
√

2x2 + 2y2

(b) x = y

(c) z2 = x2 − y2

7. Convert the following equations in Cartesian coordi-
nates to cylindrical coordinates.

(a) z = x2 + y2

(b) 1 = x2 − y2

8. Convert the following equations in Cartesian coordi-
nates to spherical coordinates.

(a) x2 + y2 = 4

(b) x2 + y2 + z2 = 2x

(c) z = −
√

x2 + y2

(d) z2 = x2 − y2

9. Convert the following equations in Cartesian coordi-
nates to spherical coordinates.

(a) x = y

(b) (x2 + y2 + z2)2 = z

10. For each of the following regions in R3, given in Carte-
sian coordinates,

(i) Give a description in spherical coordinates.

(ii) Give a description in cylindrical coordinates.

(a) C = {(x, y, z) : z ≥
√

x2 + y2, x2+y2+(z−1)2 ≤ 1}
(ice cream cone)

(b) L = {(x, y, z) : z ≥
√

x2 + y2, x2 + y2 + z2 ≤ 2}
(licked ice cream cone)

(c) R = {(x, y, z) : z ≥
√

x2 + y2, z ≤ 1} (really licked
ice cream cone)
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Answers to Mid-Section Exercises

Answers to Chapter 1

1.1 Exercise 1: a) The domain of f is 1 − x2 − y2 > 0⇒ x2 + y2 < 1. The range is z ≤ 0.

b) The domain of f is 16 − x2 + y2 ≥ 0⇒ x2 − y2 ≤ 16. The range is z ≥ 0.

1.2 Exercise 1:

213
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Exercise 2:

Answers to Chapter 2

2.3 Exercise 1: Show that lim
y→0

f (0, y) = 0 ! 1. Thus f (x, y) does not approach a unique value as

(x, y)→ (0, 0).

Exercise 2: Show that lim
x→0

f (x,mx3) =
m

1 + m2
. Thus f (x, y) does not approach a unique

value as (x, y)→ (0, 0).

Exercise 3: Show that lim
x→1

f (x, 0) does not exist. Thus lim
(x,y)→(1,0)

f (x, y) does not exist.

2.4 Exercise 1: If m(x, y) ≤ f ((x, y)) ≤ M(x, y) and lim
(x,y)→(a,b)

m(x, y) = L = lim
(x,y)→(a,b)

M(x, y),

then lim
(x,y)→(a,b)

f (x, y) = L. To change this into our version take m(x, y) = −B(x, y) + L and

M(x, y) = B(x, y) + L.

Exercise 2: |x3 − y3| ≤ |x3| + |y3| ≤
(

|x| + |y|
)

(x2 + y2). Equality holds if and only if x = 0 or

y = 0.

Exercise 3: Show that lim
x→0

f (x,mx) = −1. Hence the limit may exist and equal −1. A

suitable inequality is

0 ≤ | f (x, y) − L| =

∣
∣
∣
∣
∣
∣

x2(x − 1) − y2

x2 + y2
− (−1)

∣
∣
∣
∣
∣
∣
=
|x3|

x2 + y2
≤ |x|.

The Squeeze Theorem implies that lim
(x,y)→(0,0)

f (x, y) = L = −1.

Answers to Chapter 3

3.1 Exercise 1: One example is f (x) =







5, if x ≥ 1

0, if x < 1.
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Exercise 2: Use |xy|
|x|+|y| ≤

|x|(|x|+|y|)
|x|+|y| = |x| to prove that lim

(x,y)→(0,0)
f (x, y) = 0 = f (0, 0). Hence f is

continuous at (0, 0).

3.2 Exercise 1: By the limit theorem and the definition of product:

lim
(x,y)→(a,b)

( f g)(x, y) = lim
(x,y)→(a,b)

f (x, y) lim
(x,y)→(a,b)

g(x, y))

= f (a, b)g(a, b), by the hypothesis

= ( f g)(a, b), by definition of product.

Therefore, by definition of continuity, f g is continuous at (a, b).

Exercise 2: Apply the limit theorems, the definition of quotient, and the definition of con-
tinuity as in exercise 1. g(a, b) ! 0 is used explicitly when you use the definition of quotient
and the limit theorem.

Note: Since g(a, b) ! 0 and g is continuous at (a, b), g(x, y) ! 0 for all (x, y) in some
neighborhood of (a, b).

Exercise 3: For f (x, y) = k we have lim
(x,y)→(a,b)

k = k = f (a, b). For f (x, y) = x we have

lim
(x,y)→(a,b)

x = a = f (a, b). For f (x, y) = y we have lim
(x,y)→(a,b)

y = b = f (a, b). So, they are all

continuous on their domain.

Exercise 4: h(x, y) = (xy)π = eπ ln(xy). Use the coordinate and constant functions, e(·) and
ln(·). Use the product and composition theorems.

Exercise 5: Use the coordinate functions, the constant function, | · | and sin(·). Use the sum,
product, quotient and composition theorems.

Exercise 6: Show that lim
x→0

f (x,mx) =
m

1 + m2
. Therefore lim

(x,y)→(0,0)
f (x, y) does not exist, and

you cannot make f continuous at (0, 0).

3.3 Exercise 1: By the Continuity Theorems f (x, y) = ln(1 + esin xy) is continuous for all (x, y).
Consequently lim

(x,y)→(1,π)
f (x, y) = f (1, π) = ln 2.

Answers to Chapter 4

4.1 Exercise 1: fx = y2 cos(xy2), fy = 2xy cos(xy2).

Exercise 2: Show that for a ! 0, h ! 0,

f (a + h,−a) − f (a,−a)

h
=

(3a2 + 3ah + h2)1/3

h2/3
.

Since lim
h→0

(3a2 + 3ah + h2)1/3

h2/3
= +∞ for a ! 0,

∂ f

∂x
(a,−a) does not exist.

Exercise 3: Show that
f (h, a) − f (0, a)

h
=
|h||a − 1|

h
. Hence, with a = 0, fx(0, 0) does not

exist, but with a = 1, fx(0, 1) = 0.

Exercise 4: ∂ f

∂x
(a, b, c) = limh→0

f (a+h,b,c)− f (a,b,c)

h
provided the limit exists. Similarly for ∂ f

∂y

and ∂ f

∂z
.
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4.2 Exercise 1: fxx =
2(y2 − x2)

(x2 + y2)2
; by symmetry fyy =

2(x2 − y2)

(x2 + y2)2
.

Exercise 2: fxy = xy−1(1 + y ln x) = fyx.

Exercise 3:

(a) We have

fx(0, y) = lim
h→0

f (0 + h, y) − f (0, 0)

h
= lim

h→0

hy
h2−y2

h2+y2

h
= −y

A similar computations shows that fy(x, 0) = x.

(b) We have

fxy(0, 0) = ( fx)y(0, 0) = lim
h→0

fx(0, 0 + h) − fx(0, 0)

h

Using part (a), the above limit becomes

lim
h→0

−h − 0

h
= −1

The computation of fyx(0, 0) = ( fy)x(0, 0) is similar.

(c) We can check directly that fxy(x, y) is not continuous at (0, 0). A straightforward compu-
tation shows that, for (x, y) ! (0, 0), we have

fx(x, y) =
y(x4 + 4x2y2 − y4)

(x2 + y2)2

and therefore

fxy(x, y) =
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3

Thus

fxy(x, y) =







x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
if (x, y) ! (0, 0),

−1 if (x, y) = (0, 0)

We claim that lim
(x,y)→(0,0)

fxy(x, y) does not exist. Indeed, if we let (x, y) approach (0, 0)

along the line y = 0, we find that fxy(x, y) → 1, while if we approach along x = 0, we
find that fxy(x, y)→ −1.

4.3 Exercise 1: z = 5 + 3
5
(x − 3) − 4

5
(y + 4).

Exercise 2: The equation of the tangent plane at (a, b,
√

a2 + b2) is

z =
√

a2 + b2 +
a

√
a2 + b2

(x − a) +
b

√
a2 + b2

(y − b).

Substituting (x, y) = (0, 0) gives z = 0.

4.4 Exercise 2: Let f (x, y) =
√

sin x + tan y, (a, b) =
(

0, π
4

)

.

Show that
√

sin x + tan y ≈ 1 + 1
2
x +

(

y − π
4

)

, for (x, y) sufficiently close to
(

0, π
4

)

. Hence
√

sin
(

1
10

)

+ tan
(

3
4

)

≈ 1.015. [Calculator value 1.0156]
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Exercise 4: The area A is A = f (x, θ) = 1
4
x2 tan θ. Show

that ∆A ≈ −0.48m2. [Calculator −0.4626]

4.5 Exercise 1: Let f (x, y, z) = xyz, (a, b, c) = (5, 7, 10). Show that

xyz ≈ 350 + 70(x − 5) + 50(y − 7) + 35(z − 10).

Hence 4.99 × 7.01 × 9.99 ≈ 349.45. [Calculator 349.4492]

Answers to Chapter 5

5.1 Exercise 1: Use the definition of partial derivative to show that fx(0, 0) = 1 and fy(0, 0) = 0.

It follows that
|R1,(0,0)(x,y)|
‖(x,y)−(0,0)‖ = g(x, y), where g(x, y) = |xy2 |

(x2+y2)3/2 . Show that lim
x→0

g(x, x) = 2−
3
2 ! 0.

Exercise 2: Show that
|R1,(0,0)(x, y)|
‖(x, y) − (0, 0)‖

=
|xy|

√

x2 + y2
, and that 0 ≤

|xy|
√

x2 + y2
≤ |y|.

Exercise 3: Show that
f (h, 1) − f (0, 1)

h
=
|h|
h

, so that fx(0, 1) does not exist. Hence, f can

not be differentiable.

Exercise 4: One possibility is f (x, y) =
√

(x − 1)2 + (y − 2)2.

5.2 Exercise 1: f is not differentiable at a, since if it were, Theorem 1 would imply that f is
continuous at a, a contradiction.

Exercise 2: See example 1 in section 5.1.

5.3 Exercise 1: Show that fx(0, 0) = 0 = fy(0, 0), and
|R1,(0,0)(x, y)|
‖(x, y) − (0, 0)‖

= (x2 + y2)1/6.

Exercise 2: Since the partial derivatives of fx (that is, fxx and fxy) are continuous, fx is
differentiable and hence continuous. Similarly, the partial derivatives of fy are continuous,
hence fy is differentiable and thus continuous. Therefore f is differentiable and hence also
continuous.

5.4 Exercise 1: Use the approximation formula to obtain

g(x, y) =
√

1 + 3 tan x + sin y ≈ 2 +
3

2

(

x −
π

4

)

+
1

4
y.

Use the continuity theorems to prove that g has continuous partials. Then theorem 2 implies

that the approximation is valid for (x, y) sufficiently close to
(
π
4
, 0

)

.

Exercise 2:

(a) TRUE. If f is not continuous at (0, 0), then f is not differentiable at (0, 0) by Theorem
5.2.1. So, at least one of fx and fy must not be continuous at (0, 0) as otherwise f would
be differentiable at (0, 0) by Theorem 5.3.2.
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(b) FALSE. The function f (x, y) =







x2y

x2+y2 if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)
is continuous at (0, 0) and both

its partial derivatives exist, but it is not differentiable at (0, 0).

(c) FALSE. Use the same function as in (b).

(d) FALSE. Use the same function as in (b).

(e) TRUE. By definition of differentiability.

(f) FALSE. The function f (x, y) =







(x2 + y2) sin
(

1
x2+y2

)

if (x, y) ! (0, 0)

0 if (x, y) = (0, 0)
is differentiable

at (0, 0), but both its partial derivatives are not continuous at (0, 0).

Answers to Chapter 6

6.1 Exercise 1: f is not differentiable at (0, 0).

Exercise 2:
dT

dt
(0) = 8

5
.

Exercise 3: f ′(1) = −2. Assume that g is differentiable at (2, 0).

Exercise 4: g′(t) = fx(cos t, sin t)(− sin t) + fy(cos t, sin t)(cos t); g′
(
π
3

)

= 1
2
.

Exercise 5: g′(t) = ∇F(t, t2, t3) · (1, 2t, 3t2); g′(1) = 6.

6.2 Exercise 1: Repeat what was done near the beginning of section 6.1 and use the linear
approximation again to evaluate ∆x

∆t
and ∆y

∆t
. We need f to be differentiable to ensure the linear

approximation is a good approximation.

Exercise 2: ∂g
∂y

(x, y) = 2xD1 f (2xy, x2 − y2) − 2yD2 f (2xy, x2 − y2), so ∂g
∂y

(1, 1) = −2.

Exercise 3: g′(t) = D1 f (h(t) + t, h(t) − t)(h′(t) + 1) + D2 f (h(t) + t, h(t) − t)(h′(t) − 1).

Exercise 4: g′(1) = 2.

Exercise 5: Repeat what was done near the beginning of section 6.1.

Exercise 6:

∂g

∂x
(x, y) = (1) f (2xy, x2 − y2) + x

[

(2y)D1 f (2xy, x2 − y2) + 2xD2 f (2xy, x2 − y2)
]

.

∂g

∂x
(1, 1) = 9.

Exercise 7:
∂u

∂s
= D1 f (· · · )

∂x

∂s
+ D2 f (· · · )

∂y

∂s
+ D3 f (· · · )(1)

where (· · · ) =
(

x(s, t), y(s, t), s, t
)

.

6.3 Exercise 1: Assume that g has continuous second partials.

Exercise 2: fx = yg′(xy), fy = xg′(xy), fxx = y2g′′(xy), fyy = x2g′′(xy), so x2 fxx =

x2y2g′′(xy) = y2g′′(xy). Assume that g has a continuous second derivative.
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Answers to Chapter 7

7.1 Exercise 1: Dû f (1,−1, 2) = 4
3e2 , with û =

(
1
3
, 2

3
,− 2

3

)

.

7.2 Exercise 1: The largest rate of change is ‖∇ f (0, 1)‖ =
√

5, and occurs in the direction (1, 2).

Exercise 2: Give f and a such that ∇ f (a) = 0, e.g. f (x, y) = x2 + y2, a = (0, 0). The tangent
plane is horizontal at a.

Exercise 3: Show that ∇ f · ∇g = 0, and apply The-
orem 2.

7.3 Exercise 1: (x − 1) + 2(y − 1) + 3
√

3(z −
√

3) = 0.

Exercise 2: 8(x − 1) − 3(y − 2) + (z + 2) = 0.

Answers to Chapter 8

8.1 Exercise 1: P2,a(x, y) = 2
3
− (x − 1)2 + 1

2
y2.

8.2 Exercise 1: We have fxx = 4e−2x+y, fxy = −2e−2x+y, and fyy = e−2x+y. Since f ∈ C2, by
Taylor’s Theorem there is a point c such that

∣
∣
∣R1,(1,1)(x, y)

∣
∣
∣ =

1

2

∣
∣
∣ fxx(c)(x − 1)2 + 2 fxy(c)(x − 1)(y − 1) + fyy(c)(y − 1)2

∣
∣
∣

≤
1

2

[

| fxx(c)| (x − 1)2 + 2| fxy(c)||(x − 1)||(y − 1)| + | fyy(c)|(y − 1)2
]

,

by the triangle inequality. Thus, on 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 we have

| fxx| ≤ 4e, | fxy| ≤ 2e, | fyy| ≤ e.

Hence,

∣
∣
∣R1,(1,1)(x, y)

∣
∣
∣ ≤ 2e(x − 1)2 + 2e|x − 1||y − 1| +

1

2
e(y − 1)2

≤ 2e(x − 1)2 + e(x − 1)2 + e(y − 1)2 + 2e(y − 1)2

= 3e[(x − 1)2 + (y − 1)2]

8.3 Exercise 1:

P3,(a,b) = P2,(a,b)(x, y) +
1

6
fxxx(a, b)(x − a)3 +

1

2
fxxy(x − a)2(y − b)

+
1

2
fxyy(x − a)(y − b)2 +

1

6
fyyy(a, b)(y − b)3
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Answers to Chapter 9

9.1 Exercise 1: fx = y(1 + x)ex−y, fy = x(1 − y)ex−y; (0, 0) and (−1, 1).

Exercise 2: Critical points are
(

0, π
2
+ kπ

)

, k ∈ Z.

Exercise 3: One possibility is a linear function, e.g. f (x, y) = 2x + 3y.

9.2 Exercise 2: One critical point (0, 0), a saddle point.

Exercise 3: The critical points are (±1, 0) and
(

0,± 1√
3

)

. H f (±1, 0) =

[

0 ±2
±2 0

]

, indefinite;

(±1, 0) are saddle points. H f
(

0, 1√
3

)

=





2
√

3
3

0

0 2
√

3



, positive definite;
(

0, 1√
3

)

is a local

minimum point. Similarly,
(

0,− 1√
3

)

is a local maximum point.

Answers to Chapter 10

10.1 Exercise 1: 1. I = [0, 2], f (x) =







x, if 0 ≤ x < 1

x − 2 if 1 ≤ x ≤ 2.

2. I = (0, π
2
), f (x) = tan x. 3. I = [1,∞), f (x) = 1

x
.

10.2 Exercise 1: Critical points of f are (1, 0) and (−1, 0). On
the boundary, g(t) = f (2 cos t, 3 sin t) = 3 sin t(3 − 4 sin2 t).
Critical points of g are t = π

6
, 5π

6
, 7π

6
, 11π

6
, π

2
, 3π

2
. Maximum

value of f is 3, and occurs at
(

±
√

3, 3
2

)

and (0,−3).

Exercise 2: Maximum value is 1
4
, and occurs at

(
1
2
, 1

2

)

.

10.3 Exercise 1: Maximum value is 1
2

and occurs at
(

± 1√
2
,± 1√

2

)

.

Exercise 2: Maximum value is 24+4
√

6 at (2
√

6, 0) and the minimum value is -1 at (−1, 0).

Exercise 3: The closest points are (0, 0,±1).

Answers to Chapter 11

11.1 Exercise 1: The integral equals the number of people in the region D.
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11.2 Exercise 1:

a) D : 0 ≤ x ≤ 4 − y2,−2 ≤ y ≤ 2.

I =

"

D

(x+y) dA =

2∫

−2

4−y2
∫

x=0

(x+y) dx dy =
256

15
.

b) D : −
√

4 − x ≤ y ≤
√

4 − x, 0 ≤ x ≤ 4.

I =

4∫

0

√
4−x∫

−
√

4−x

(x + y) dy dx.

Exercise 2: D : x ≤ y ≤ 2 − x, 0 ≤ x ≤ 1.

"

D

y dA =

1∫

0

2−x∫

x

y dy dx = 1.

Exercise 3: D : 0 ≤ x ≤ y, 0 ≤ y ≤ 1.

"

D

e−y2

dA =

1∫

0

y
∫

0

e−y2

dx dy =
e − 1

2e
.

Exercise 4: ∆V ≈ (4 − x2 − y2)∆A; D is a rectangle.

V =

"

D

(4 − x2 − y2) dA =

1∫

0

1∫

0

(4 − x2 − y2) dy dx =
10

3
.

Answers to Chapter 12

12.1 Exercise 1: The image is
(

u − 1
2

)2
+

(

v + 1
2

)2
= 1

2
.

Exercise 2: F(S ) = {(u, v) | v ≤ u ≤ 2v, 2 ≤ v ≤ 3}.

12.2 Exercise 1:

[

∆u
∆v

]

≈ DF(1, 0)

[

∆x
∆y

]

=

[

1 1
1 −1

] [

∆x
∆y

]

, for∆x, ∆y sufficiently small. F(0.95, 0.1) ≈

(0.05,−0.15). [Calculator (0.0488, −0.1625)]
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12.3 Exercise 1: a) D(F ◦G) =





4uvx√
2x2+2y2

+ 2u2 4uvy√
2x2+2y2

+ 2yu2

2xveuv−1√
2x2+2y2

+ 2ueuv−1 2yveuv−1

√
2x2+2y2

+ 2yueuv−1





b) D(G ◦ F)(1, 1) = DG(1, 1)DF(1, 1) =

[

3 2
6 4

]

.

c) (G ◦ F)(1.01, 0.98) ≈ (G ◦ F)(1, 1) + D(G ◦ F)(1, 1)

[

.01
−0.02

]

=

[

1.99
2.98

]

.

Answers to Chapter 13

13.1 Exercise 1:
∂(x, y)

∂(r, θ)
= det

[

cos θ −r sin θ
sin θ r cos θ

]

= r.

Exercise 2: This involves solving a quadratic equation. In order to choose the appropriate
sign, ensure that the image of (x, y) = (1,−2), i.e. the point (u, v) = (−3,−1), is mapped by
F−1 onto (1,−2) again.

13.2 Exercise 1:
∣
∣
∣
∣
∂(u,v)
∂(x,y)

∣
∣
∣
∣ = x2y, so if 1

2
≤ x ≤ 1 and 1

2
≤ y ≤ 1, then x2y ≤ 1. Thus the image of S

under F will have less area.

Exercise 2: Show that

∣
∣
∣
∣
∣

∂(u, v)

∂(x, y)

∣
∣
∣
∣
∣
= 1.

Exercise 3: Show that
∂(u, v)

∂(x, y)
= 1.

13.3 Exercise 1: Observe that 3x2 + 2xy + y2 = 2x2 + (x + y)2, so take u =
√

2x and v = x + y.

Exercise 2: Let u = xy, v = xz, and w = yz. The cube is 1 ≤ u ≤ 3, 1 ≤ v ≤ 3, 2 ≤ w ≤ 4.

13.4 Exercise 3: Use polar coordinates.

"

Dxy

1
√

x2 + y2
dx dy =

π
2∫

0

2∫

1

1

r
(r) dr dθ =

π

2
.

Exercise 4: Let (u, v) =
(

xy, y

x

)

. Use the inverse property of the Jacobian to show that

∂(x, y)

∂(u, v)
= 1

2v
. Then

I =

3∫

2

e∫

1

u

(

1

2v

)

dv du =
5

4
.
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Answers to Chapter 14

14.2 Exercise 2:

$

D

z dV =

c∫

0

a(1− z
c )∫

0

b(1− x
a−

z
c )∫

0

z dy dx dz.

Exercise 3: A triple integral can be written as an iterated integral in 3! = 6 ways.

Exercise 4: Refer to the diagram in Example 2. The iterated integral is

2∫

0

6−2y
∫

2−y

√
4−y2

∫

0

z

4 − y
dz dx dy.

In order to integrate first with respect to y, you would have to decompose D into several
pieces.

Exercise 5: D is described by the inequalities
0 ≤ z ≤ 1 − y, 0 ≤ y ≤ 1, 0 ≤ x ≤ 2.

$

D

y dV =

2∫

0

1∫

0

1−y
∫

0

y dz dy dx =
1

3
.

14.3 Exercise 2: The solid is described by the inequalities 1 ≤ x+ y ≤ 2,−1 ≤ x− y ≤ 1, 0 ≤ x+
y + z ≤ 3. Let (u, v,w) = (x + y, x − y, x + y + z). Show that

∣
∣
∣
∣
∣

∂(x, y, z)

∂(u, v,w)

∣
∣
∣
∣
∣
=

1

2
.

Then

V =

2∫

1

1∫

−1

3∫

0

1

(

1

2

)

dw dv du = 3.

Exercise 3: Use cylindrical coordinates.

M =

2π∫

0

1∫

0

2∫

0

k(2 − z)

1 + r2
(r) dz dr dθ = 2πk ln 2.

Exercise 4: Use cylindrical coordinates. The
paraboloid is z = r2, and the lower part of the
cone is z = 2 − r, and they intersect in the circle
r = 1.

V =

2π∫

0

1∫

0

2−r∫

r2

1(r) dz dr dθ =
5π

6
.
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Exercise 6: Use the hint, and show that
∂(x, y, z)

∂(u, v,w)
= abc.

V =

$

Duvw

abc du dv dw,

where Duvw is given by u2 + v2 + w2 = 1. Replace u, v,w by spherical coordinates and show
that

V =
4

3
πabc.

Exercise 7: Use spherical coordinates, and refer to the diagram in the text.

V =

2π∫

0

α∫

0

b∫

0

r2 sin φ dr dφ dθ =
2

3
πb3(1 − cosα)

Answers to Appendix B

B.1 Exercise 1:

Exercise 2:

Exercise 3: r2 cos 2θ = 1.

Exercise 4: A = 2
π/2∫

0

1
2
[2
√

sin 2θ]2 dθ = 4.

Exercise 5: A =
π/4∫

0

1
2

sin2 θ dθ +
π/2∫

π/4

1
2

cos2 θ dθ = π
8
− 1

4
.
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B.2 Exercise 1:

Exercise 2: z = sin θ, r ! 0.

B.3 Exercise 1: ρ = 2 cos θ sin φ, −π
2
≤ θ ≤ π

2
.
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